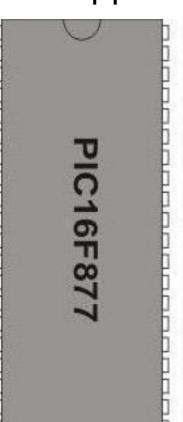



#### Лекции

# Микроконтроллеры Что такое микроконтроллер

#### Состав микроконтроллера PIC16

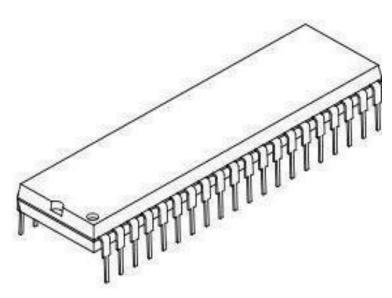



#### Роспись выводов и внешний вид PIC16F877

RE3/MCLR/Vpp RA0/AN0/ULPWU/C12IN0-RA1/AN1/C12IN1-RA2/AN2/Vref-/CVref/C2IN+ AN3/Vref+/C1IN+ RA4/T0CKI/C1OUT RA5/AN4/SS/C2OUT RE0/AN5 RE1/AN6 RE2/AN7 Vdd Vss RA7/OSC1/CLKIN RA6/OSC2/CLKOUT RC0/T10S0/T1CKI RC1/T1OSI/CCP2 RC2/P1A/CCP1 RC3/SCK/SCL

RD0

RD1




RB7/ICSPDAT RB6/ICSPCLK RB5/AN13/T1G **RB4/AN11** RB3/AN9/PGM/C12IN2-RB2/AN8 RB1/AN10/C12IN3-RB0/AN12/INT Vdd Vss RD7/P1D RD6/P1C RD5/P1B RD4 RC7/RX/DT RC6/TX/CK

RC5/SDO

RD3 RD2

RC4/SDI/SDA



#### Тактирование

Рис. 12-1 Подключение кварцевого/керамического резонатора в HS, XT и LP режиме тактового генератора




Рис. 12-2 Подключение внешнего тактового сигнала в HS, XT и LP режиме тактового генератора

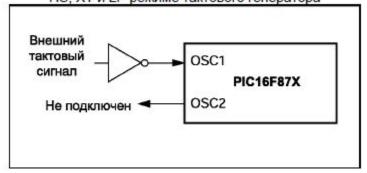
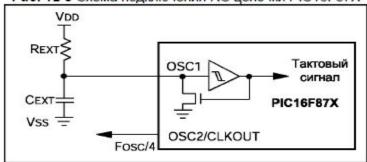
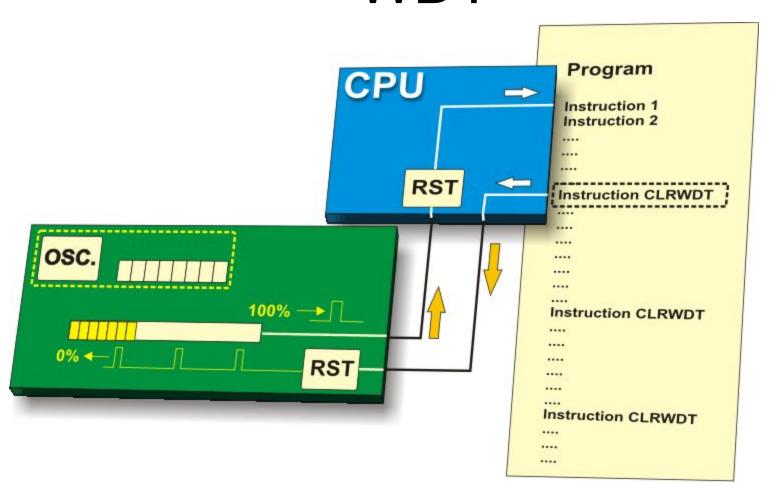




Таблица 12-2 Параметры конденсаторов для кварцевого резонатора (оценочные значения)

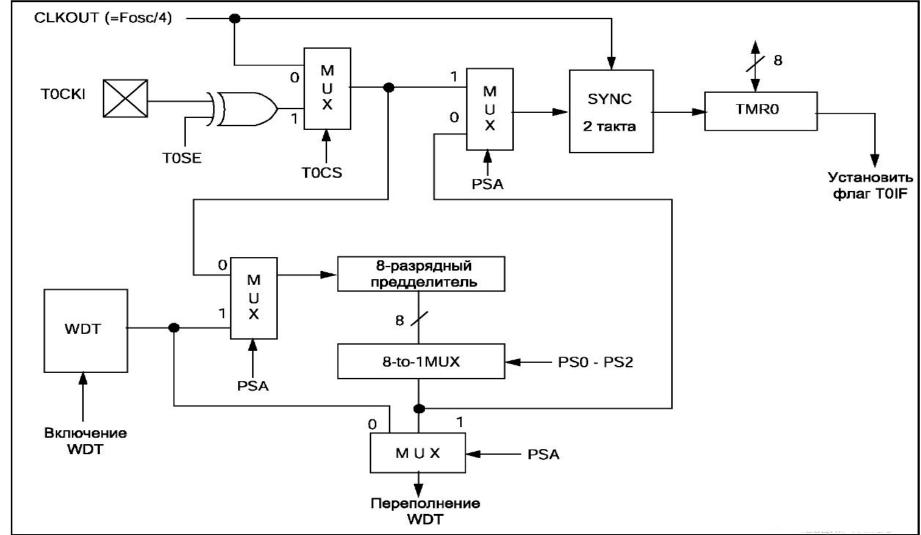
| Режим | Частота | OSC1(C1) | OSC2(C2) |
|-------|---------|----------|----------|
| LP    | 32 кГц  | 33пФ     | 33пФ     |
|       | 200 кГц | 15пФ     | 15пФ     |
| XT    | 200 кГц | 47-68пФ  | 47-68пФ  |
|       | 1 МГц   | 15пФ     | 15пФ     |
|       | 4 МГЦ   | 15πΦ     | 15пФ     |
| HS    | 4 МГЦ   | 15πΦ     | 15пФ     |
|       | 8 МГц   | 15-33пФ  | 15-33пФ  |
|       | 20 МГц  | 15-33пФ  | 15-33пФ  |

| Резонатор | Резонаторы, используемые при тестировании |        |  |  |  |  |  |  |  |  |
|-----------|-------------------------------------------|--------|--|--|--|--|--|--|--|--|
| 32кГц     | Epson C-001R32.768K-A                     | ±20PPM |  |  |  |  |  |  |  |  |
| 200кГц    | STD XTL 200.000KHz                        | ±20PPM |  |  |  |  |  |  |  |  |
| 1МГц      | ECS ECS-10-13-1                           | ±50PPM |  |  |  |  |  |  |  |  |
| 4МГц      | ECS ECS-40-20-1                           | ±50PPM |  |  |  |  |  |  |  |  |
| 8МГц      | EPSON CA-301 8.000M-C                     | ±30PPM |  |  |  |  |  |  |  |  |
| 20МГц     | EPSON CA-301 20.000M-C                    | ±30PPM |  |  |  |  |  |  |  |  |


Puc. 12-3 Схема подключения RC цепочки PIC16F87X



Рекомендованные значения:


 $3 \text{KOM} \le R_{\text{EXT}} \le 100 \text{KOM}$  $C_{\text{EXT}} > 20 \text{ n}\Phi$ 

#### **WDT**



### Структурная схема TMR0

Puc. 5-1 Блок схема таймера TMR0



#### Настройка регистров

Perистр OPTION\_REG (адрес 81h или 181h)

| R/W-1 | R/W-1  | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|-------|--------|-------|-------|-------|-------|-------|-------|
| -RBPU | INTEDG | TOCS  | T0SE  | PSA   | PS2   | PS1   | PS0   |
| Бит 7 |        |       |       |       |       |       | Бит 0 |

R – чтение бита

W - запись бита

U – не реализовано, читается как 0

–n – значение после POR

-х - неизвестное

значение после POR

бит 7: -RBPU:

бит 6: INTEDG:

бит 5: TOCS: Выбор тактового сигнала для TMR0

1 = внешний тактовый сигнал с вывода RA4/T0CKI

0 = внутренний тактовый сигнал CLKOUT

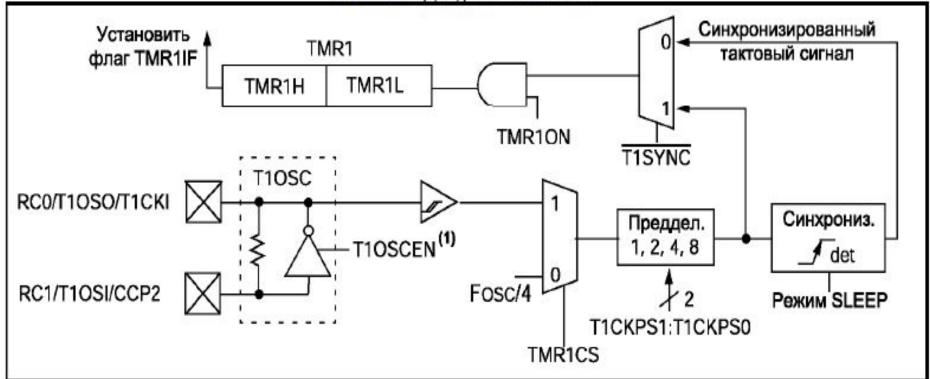
бит 4: TOSE: Выбор фронта приращения TMR0 при внешнем тактовом сигнале

1 = приращение по заднему фронту сигнала (с высокого к низкому уровню) на выводе RA4/T0CKI

0 = приращение по переднему фронту сигнала (с низкого к высокому уровню) на выводе RA4/T0CKI

бит 3: PSA: Выбор включения предделителя

1 = предделитель включен перед WDT


0 = предделитель включен перед TMR0

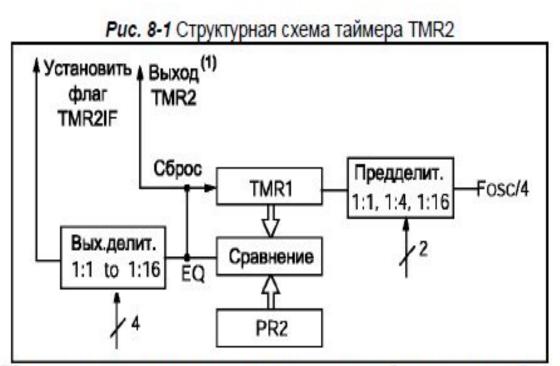
биты 2-0: PS2: PS0: Установка коэффициента деления предделителя

| Значение | Для TMR0 | Для WDT |
|----------|----------|---------|
| 000      | 1:2      | 1:1     |
| 001      | 1:4      | 1:2     |
| 010      | 1:8      | 1:4     |
| 011      | 1:16     | 1:8     |
| 100      | 1:32     | 1:16    |
| 101      | 1:64     | 1:32    |
| 110      | 1:128    | 1:64    |
| 111      | 1:256    | 1:128   |

#### Структурная схема TMR1






Примечание. Если T1OSCEN=0, то инвертирующий элемент и резистивная обратная связь выключены для уменьшения тока потребления.

# Настройка регистров

Регистр T1CON (адрес 10h)

| U-0    | U-0 R/W-0                                          |                                               | R/W-0          | R/W-0     | R/W-0       | R/W-0        | ·                        |
|--------|----------------------------------------------------|-----------------------------------------------|----------------|-----------|-------------|--------------|--------------------------|
| -      | - T1CKP                                            | S1 T1CKPS0                                    | T10SCEN        | -T1SYNC   | TMR1CS      | TMR10N       | R – чтение бита          |
| Бит 7  |                                                    |                                               |                |           |             | Бит 0        | W – запись бита          |
|        |                                                    |                                               |                |           |             |              | U – не реализовано,      |
|        |                                                    |                                               |                |           |             |              | читается как 0           |
|        |                                                    |                                               |                |           |             |              | –n – значение после PO   |
|        |                                                    |                                               |                |           |             |              | -x – неизвестное         |
| 1.020  | 2020 - 2021 T. |                                               | 1 11 1 1 1 220 |           |             |              | значение после РО        |
| ОИТЫ   | 7-6: <b>Не реализо</b>                             | ваны: читаю                                   | тся как '0'    |           |             |              |                          |
| биты   | 5-4: T1CKPS1:T1                                    | 1CKPS0: Выб                                   | бор коэффи     | циента де | ления пред  | делителя ТМ  | R1                       |
|        | 11 = 1:8                                           |                                               | 35 D T         | 53 (537)  | 82 83       |              |                          |
|        | 10 = 1:4                                           |                                               |                |           |             |              |                          |
|        | 01 = 1:2                                           |                                               |                |           |             |              |                          |
|        | 00 = 1:1                                           |                                               |                |           |             |              |                          |
| бит 3: | T10SCEN:                                           | Зключение та                                  | ктового ген    | ератора Т | MR1         |              |                          |
|        | 1 = генерато                                       |                                               |                | A 10      |             |              |                          |
|        | 0 = генерат                                        | ор выключен                                   | (инвертиру     | ующий эле | емент и ре  | зистивная об | ратная связь выключены , |
|        | уменьшения                                         | тока потребл                                  | пения)         | S 64      |             |              | 10                       |
| бит 2: | -T1SYNC: C                                         | инхронизаци                                   | я внешнего     | тактового | сигнала     |              |                          |
|        | TMR1CS = 1                                         |                                               |                |           |             |              |                          |
|        | 1 = не синхр                                       | онизировать                                   | внешний та     | актовый   |             |              |                          |
|        | 0 = синхрони                                       | изировать вне                                 | ешний такто    | овый      |             |              |                          |
|        | TMR1CS = 0                                         | ſ                                             |                |           |             |              |                          |
|        | Значение би                                        | та игнорируе                                  | тся            |           |             |              |                          |
| бит 1: | TMR1CS: BI                                         | ыбор источни                                  | ка тактовог    | о сигнала |             |              |                          |
|        |                                                    |                                               |                | /T10S0/T1 | ІСКІ (актив | ным является | передний фронт сигнала)  |
|        | 0 = внутренн                                       | ний источник                                  | Fosc/4         |           |             |              |                          |
|        |                                                    |                                               | avna TMD1      |           |             |              |                          |
| бит 0: | TMR10N: BI                                         | ключение мо.                                  | LYJIN LIVIES I |           |             |              |                          |
| бит 0: | TMR1ON: В<br>1 = включен                           | Service Service Control of Control of Control | цуля Пикт      |           |             |              |                          |

#### Структурная схема TMR2



Примечание 1. TMR2 может использоваться для программного выбора скорости обмена данными модуля SSP.

## Настройка регистров

Perистр T2CON (адрес 12h)

| - TOUT    | TPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0          | R – чтение бита        |
|-----------|--------------------------------------------------------------|------------------------|
| 5ит 7     | Бит 0                                                        | W – запись бита        |
|           |                                                              | U – не реализовано,    |
|           |                                                              | читается как 0         |
|           |                                                              | –n – значение после Ро |
|           |                                                              | -х - неизвестное       |
|           |                                                              | значение после РО      |
| бит 7:    | Не реализован: читается как '0'                              |                        |
|           |                                                              |                        |
| биты 6-3: | TOUTPS3:TOUTPS0: Выбор коэффициента выходного делителя TMR2  |                        |
|           | 0000 = 1:1                                                   |                        |
|           | 0001 = 1:2                                                   |                        |
|           |                                                              |                        |
|           |                                                              |                        |
|           | 1111 = 1:16                                                  |                        |
| бит 2:    | TMR2ON: Включение модуля TMR2                                |                        |
|           | 1 = включен                                                  |                        |
|           | 0 = выключен                                                 |                        |
| биты 1-0: | T2CKPS1:T2CKPS0: Выбор коэффициента деления предделителя ТМБ | ₹2                     |
|           | 00 = 1:1                                                     |                        |
|           | 01 = 1:4                                                     |                        |
|           |                                                              |                        |

#### Регистры TMR0-2

Таблица 5-1 Регистры и биты, связанные с работой TMR0

| Адрес                 | RMN        | Бит 7   | Бит 6   | Бит 5 | Бит 4 | Бит 3 | Бит 2 | Бит 1 | Бит 0 | Cброс<br>POR, BOR | Другие<br>сбросы |
|-----------------------|------------|---------|---------|-------|-------|-------|-------|-------|-------|-------------------|------------------|
| 01h,101h              | TMR0       | Регистр | таймера | 0     |       |       |       |       |       | XXXX XXXX         | uuuu uuuu        |
| 0Bh,8Bh,<br>10Bh,18Bh | INTCON     | GIE     | PEIE    | TOIE  | INTE  | RBIE  | TOIF  | INTF  | RBIF  | 0000 000x         | 0000 000u        |
| 81h,181h              | OPTION_REG | -RBPU   | INTEDG  | TOCS  | TOSE  | PSA   | PS2   | PS1   | PS0   | 1111 1111         | 1111 1111        |

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты на работу не влияют.

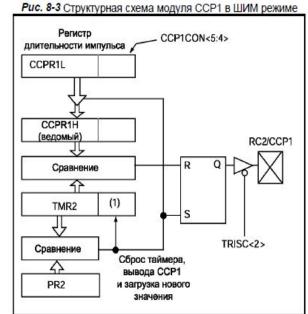
Таблица 6-2 Регистры и биты, связанные с работой TMR1

| Адрес                 | ВМИ    | Бит 7   | Бит 6                                | Бит 5     | Бит 4     | Бит 3   | Бит 2   | Бит 1  | Бит 0  | Cброс<br>POR, BOR | Другие<br>сбросы |
|-----------------------|--------|---------|--------------------------------------|-----------|-----------|---------|---------|--------|--------|-------------------|------------------|
| 0Bh,8Bh,<br>10Bh,18Bh | INTCON | GIE     | PEIE                                 | TOIE      | INTE      | RBIE    | TOIF    | INTF   | RBIF   | 0000 000x         | 0000 000u        |
| 0Ch                   | PIR1   | PSPIF*  | ADIF                                 | RCIF      | TXIF      | SSPIF   | CCP1F   | TMR2IF | TMR1IF | 0000 0000         | 0000 0000        |
| 8Ch                   | PIE1   | PSPIE*  | ADIE                                 | RCIE      | TXIE      | SSPIE   | CCP1E   | TMR2IE | TMR1IE | 0000 0000         | 0000 0000        |
| 0Eh                   | TMR1L  | Младши  | й байт 16-                           | разрядног | о таймера | 1       | 67      | 5'     |        | XXXX XXXX         | uuuu uuuu        |
| 0Fh                   | TMR1H  | Старший | Старший байт 16-разрядного таймера 1 |           |           |         |         |        |        | XXXX XXXX         | uuuu uuuu        |
| 10h                   | T1CON  | -       | -                                    | T1CKPS1   | T1CKPS0   | T10SCEN | -T1SYNC | TMR1CS | TMR10N | 00 0000           | uu uuuu          |

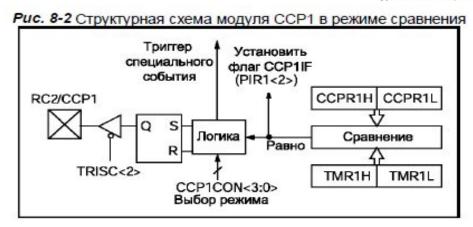
Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно, q = зависит от условий. Затененные биты на работу не влияют.

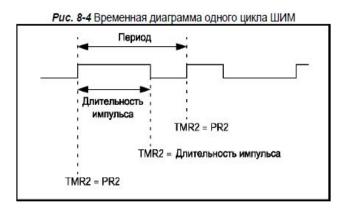
Примечание\*. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.

Таблица 7-1 Регистры и биты, связанные с работой TMR2


| Адрес                 | RMN    | Бит 7   | Бит 6                     | Бит 5   | Бит 4   | Бит 3   | Бит 2  | Бит 1   | Бит 0   | Cброс<br>POR, BOR | Другие<br>сбросы |
|-----------------------|--------|---------|---------------------------|---------|---------|---------|--------|---------|---------|-------------------|------------------|
| 0Bh,8Bh,<br>10Bh,18Bh | INTCON | GIE     | PEIE                      | TOIE    | INTE    | RBIE    | TOIF   | INTF    | RBIF    | 0000 000x         | 0000 000u        |
| 0Ch                   | PIR1   | PSPIF*  | ADIF                      | RCIF    | TXIF    | SSPIF   | CCP1F  | TMR2IF  | TMR1IF  | 0000 0000         | 0000 0000        |
| 8Ch                   | PIE1   | PSPIE*  | ADIE                      | RCIE    | TXIE    | SSPIE   | CCP1E  | TMR2IE  | TMR1IE  | 0000 0000         | 0000 0000        |
| 11h                   | TMR2   | Регистр | таймера 2                 | 2       |         |         |        |         |         | 0000 0000         | 0000 0000        |
| 12h                   | T2CON  | -       | TOUTPS3                   | TOUTPS2 | TOUTPS1 | TOUTPS0 | TMR2ON | T2CKPS1 | T2CKPS0 | -000 0000         | -uuu uuuu        |
| 92h                   | PR2    | Регистр | Регистр периода таймера 2 |         |         |         |        |         |         |                   | 1111 1111        |

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты на работу не влияют.


Примечание\*. Биты PSPIE и PSPIF в микроконтроллерах PIC16F873, PIC16F876 не используются.


#### Захват, сравнение. ШИМ

Puc. 8-1 Структурная схема модуля ССР1 в режиме захвата **Установить** флаг CCP1IF RC2/CCP1 (PIR1<2>) Преддел. 1, 4, 16 CCPR1H CCPR1L Разрешить Детект. захват фронта TMR1H TMR1L CCP1CON<3:0>



На рисунке 8-4 показана временная диаграмма одного цикла ШИМ (период ШИМ и длительность высокого уровня сигнала). Частота ШИМ есть обратная величина периоду (1/период).





#### Захват, сравнение, ШИМ

#### Perистр CCPxCON (адрес 17h/1Dh)

| U-0   | U-0 | R/W-0 | R/W-0 | R/W-0  | R/W-0  | RW-0   | R/W-0  |
|-------|-----|-------|-------|--------|--------|--------|--------|
| •     |     | CCPxX | CCPxY | CCPxM3 | CCPxM2 | CCPxM1 | CCPxM0 |
| Бит 7 |     | 28    | 92    | 80     | ije.   | TH. 13 | Бит 0  |

R – чтение бита W – запись бита

U – не реализовано, читается как 0

–n – значение после POR

-х - неизвестное

значение после POR

бит 7-6: Не используются: читаются как '0'

биты 5-4: ССРхХ:ССРхҮ: Младшие биты скважности ШИМ

Режим захвата Не используются

Режим сравнения Не используются

Режим ШИМ

Два младших бита скважности. Восемь старших находятся в CCPRxL.

биты 3-0: ССРхМ3:ССРхМ0: Режим работы модуля ССРх

0000 = модуль ССРх выключен (сброс модуля ССРх)

0100 = захвата по каждому заднему фронту сигнала

0101 = захват по каждому переднему фронту сигнала

0110 = захват по каждому 4-му переднему фронту сигнала

0111 = захват по каждому 16-му переднему фронту сигнала

1000 = сравнение, устанавливает выходной сигнал (устанавливается флаг CCPxIF в '1')

1001 = сравнение, сбрасывает выходной сигнал (устанавливается флаг CCPxIF в '1')

1010 = сравнение, на выходной сигнал не влияет (устанавливается флаг CCPxIF в '1')

1011 = сравнение, триггер специальных функций (устанавливается флаг CCPxIF в '1'; на вывод CCPx не влияет). CCP1 - сброс таймера TMR1. CCP2 - сброс таймера TMR1, запуск

преобразования АЦП (если АЦП включено).

11xx = ШИМ режим