Разложение на множители способом группировки

$$3x^{2} + 2x - 1 = 0$$

$$3x^{2} + 3x - x - 1 = 0$$

$$(3x^{2} + 3x) - (x + 1) = 0$$

$$3x (x + 1) - (x + 1) = 0$$

$$(x + 1)(3x - 1) = 0$$

$$x + 1 = 0$$

$$x = -1$$

$$3x + 1 = 0$$

$$x = -1$$

$$3x = 1$$

Ответ: -1; $\frac{1}{3}$.

Метод выделения полного квадрата

$$3x^{2} + 2x - 1 = 0$$

$$x^{2} + \frac{2}{3}x - \frac{1}{3} = 0$$

$$(x^{2} + 2 * \frac{1}{3}x + \frac{1}{9}) - \frac{1}{9} - \frac{1}{3} = 0$$

$$(x + \frac{1}{3})^{2} - \frac{4}{9} = 0$$

$$(x + \frac{1}{3} - \frac{2}{3})(x + \frac{1}{3} + \frac{2}{3}) = 0$$

$$(x - \frac{1}{3})(x + 1) = 0$$

$$x + 1 = 0$$

$$x = -1$$

$$3x + 1 = 0$$

$$3x = 1$$

Ответ: $-1; \frac{1}{3}$.

 $X = \frac{1}{3}$

Метод разложения на множители, используя теорему Безу

$$3x^2 + 2x - 1 = 0$$

-1 – корень многочлена $3x^2 + 2x - 1$.

Используя схему Горнера, найдем А(-1)

	3	2	-1
-1	3	-1	0

$$(x+1)(3x-1) = 0$$

 $x+1=0$ $3x+1=0$
 $x=-1$ $3x=1$ OTBET: -1; $\frac{1}{3}$.

Метод сведения уравнения к квадратам левой и правой части

$$3x^2 + 2x - 1 = 0$$

$$3x^2 = -2x + 1$$

$$3x^2 + x^2 = x^2 - 2x + 1 = 0$$

$$4x^2 = x^2 - 2x + 1$$

$$(2x)^2 = (x+1)^2$$

$$\sqrt{(2x)^2} = \sqrt{(x-1)^2}$$

$$|2x| = |x-1|$$

$$2x \ge 0$$
; $x \ge 0$
 $x - 1 \ge 0$; $x \ge 1$

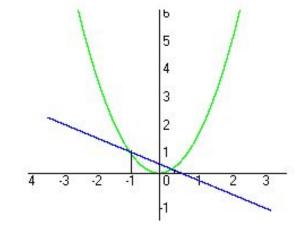
```
Для решения уравнения, содержащего модуль,
рассмотрим следующие случаи:
                                     6)
                                          0 \le x \le 1
   a) x < 0
                                          2x = -(x-1)
 -2x = -(x-1)
                                          2x = -x + 1
 -2x = -x + 1
                                          3x = 1
 -x = -1
x = 1 корень уравнения,
                                    x = \frac{1}{3} корень уравнения,
 т. к.1 принадлежит (-\infty;0)
                                  т. к. \frac{1}{3} принадлежит [0;1]
(6) x \ge 1
   2x = (x - 1)
    2x - x = -1
        x = -1 не корень уравнения,
                                               Otbet: -1; \frac{\pi}{3}.
т. к. - 1 не принадлежит [1;+\infty]
```

$$3x^2 + 2x - 1 = 0$$

$$3x^2 + 2x - 1 = 0$$
 $x^2 + \frac{2}{3}x - \frac{1}{3} = 0$ $x^2 = -\frac{2}{3}x + \frac{1}{3}$

$$x^2 = -\frac{2}{3}x + \frac{1}{3}$$

В одной координатной плоскости построим графики


функций:
$$y = x^2$$
 и $y = -\frac{2}{3}x + \frac{1}{3}$

 $y = x^2$ - парабола, вершина которой (0,0).

X	-12	-1	0	1	2
У	4	1	0	1	2

$$y = -\frac{2}{3}x + \frac{1}{3}$$
 прямая

X	0	3
У	$\frac{1}{3}$	$-1\frac{2}{3}$

Ответ: $-1; \frac{1}{3}$.