

МОСКОВСКАЯ МЕЖДУНАРОДНАЯ АКАЛЕМИЯ

ПРЕЗЕНТАЦИЯ

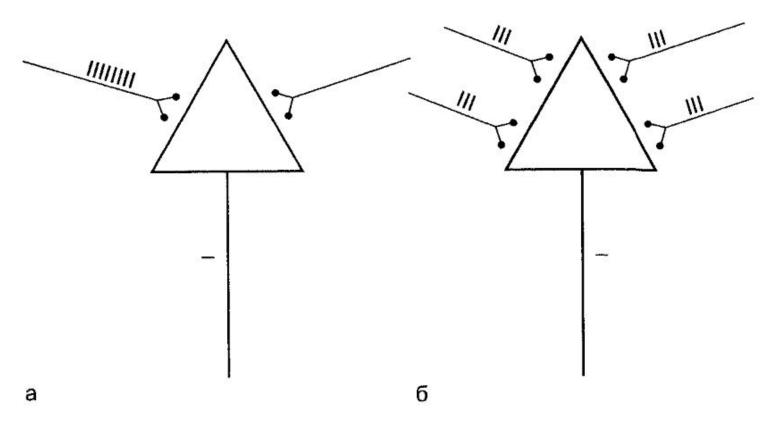
Нейрофизиология Лекция 4

Соловова Надежда Анатольевна Кандидат психологических наук solovovana@gmail.com

Нервные центры

НЦ – совокупность структур ЦНС, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт

Функциональный нервный центр может быть локализован в различных анатомических структурах


Свойства нервных центров

Односторонность проведения возбуждения (от входа афферентных путей к выходу – эфферентным путям)

Наличие синаптической задержки – при относительно высокой скорости распространения импульса по НВ, основное время рефлекса приходится на передачу возбуждения через синапс

Суммация возбуждения (пространственная - наличие на мембране нервной клетки сотен и тысяч синаптических контактов и временная – суммация ВПСП на постсинаптической мембране)

Суммация в нервных центрах

Рис. 3.6. Суммация возбуждения в ЦНС. а — временная; б — пространственная.

Трансформация ритма

- **понижающая** трансформация в ее основе лежит явление суммации возбуждений, когда в ответ на несколько пришедших возбуждений возникает только одно ответное
- **повышающая** трансформация в основе лежит механизм умножения мультипликации, повышающий количество импульсов на выходе.

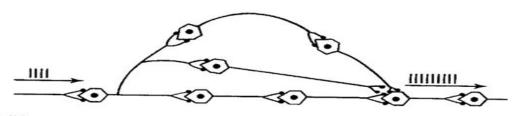


Рис. 3.7. Умножение (мультипликации) возбуждения в ЦНС.

Свойства нервных центров

Тонус – наличие определенной фоновой активности – при отсутствии внешних раздражений определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки

Высокая утомляемость – связана с истощением запасов медиатора, уменьшением энергетических ресурсов, адаптацией постсинаптического рецептора к медиатору

Высокий уровень обменных процессов и высокая чувствительность к недостатку кислорода, чем более развиты нейроны тем нужнее кислород

Пластичность – функциональная возможность НЦ существенно модифицировать картину осуществляемых рефлекторных реакций

Рефлекторное последействие

Рефлекторная реакция заканчивается позже прекращения действия раздражителя

- *длительная следовая деполяризация нейрона*, на фоне которой могут возникнуть несколько потенциалов действия, обеспечивающих **кратковременное** рефлекторное последействие.
- *циркуляция возбуждения в замкнутых нейронных цепях* **длительное** рефлекторное последействие

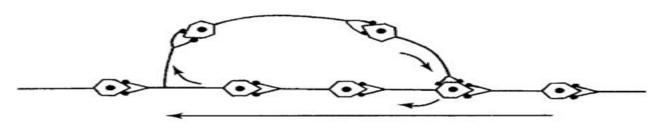
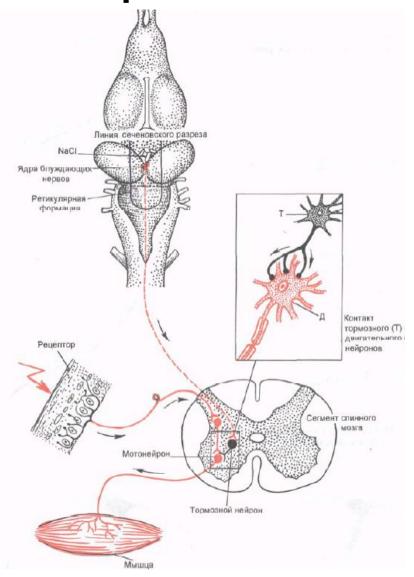


Рис. 3.8. Пролонгирование возбуждения в ЦНС.

Свойства нервных центров

Хемотропность – высокая чувствительность к действию химических веществ: БАВ, ядам и т.д.

Посттеманическая потенциация – усиление ответной реакции на единичный стимул, наблюдаемое после серии импульсов. Обусловлена накоплением избыточного количества ионов Са в пресинаптическом окончании, что ведет к мобилизации большего количества медиатора

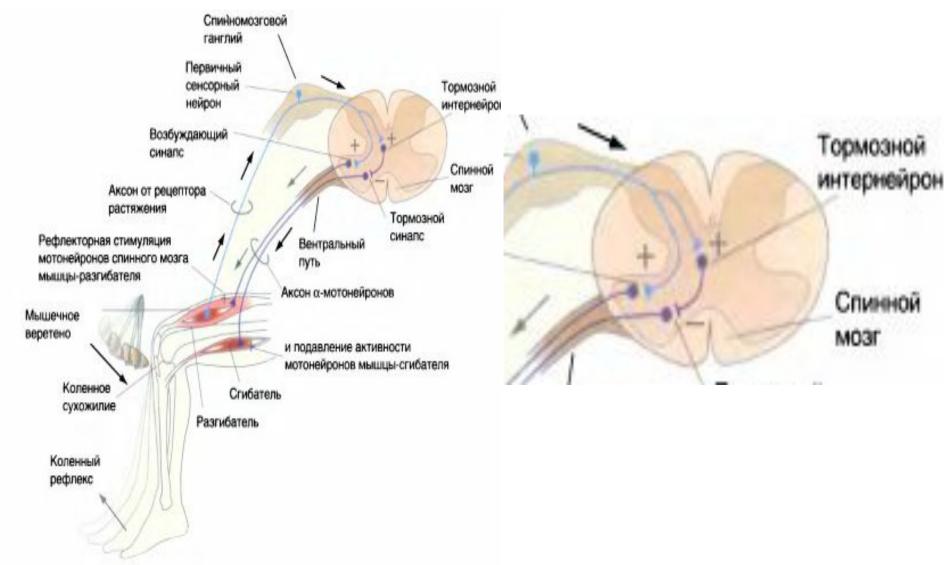

Легко возникает процесс торможения

Торможение в ЦНС

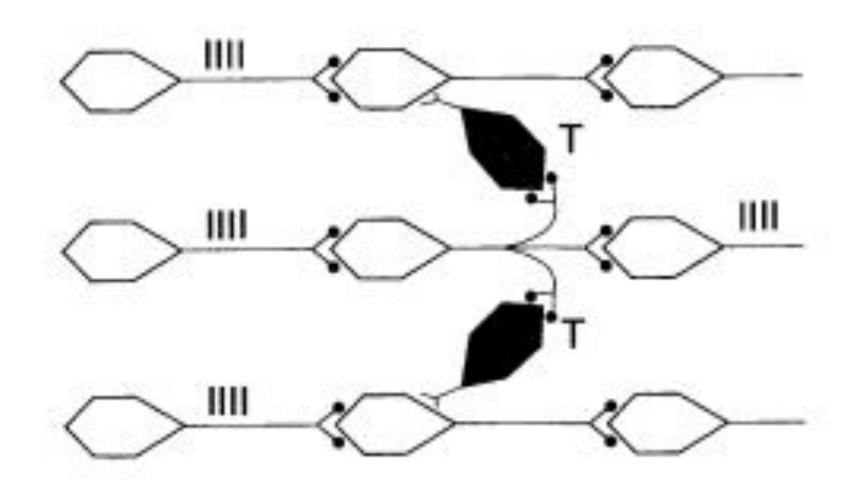
Торможение - самостоятельный нервный процесс, вызываемый возбуждением и проявляющийся в подавлении другого возбуждения

Развивается всегда в форме локального ответа и связано с существованием тормозных синапсов

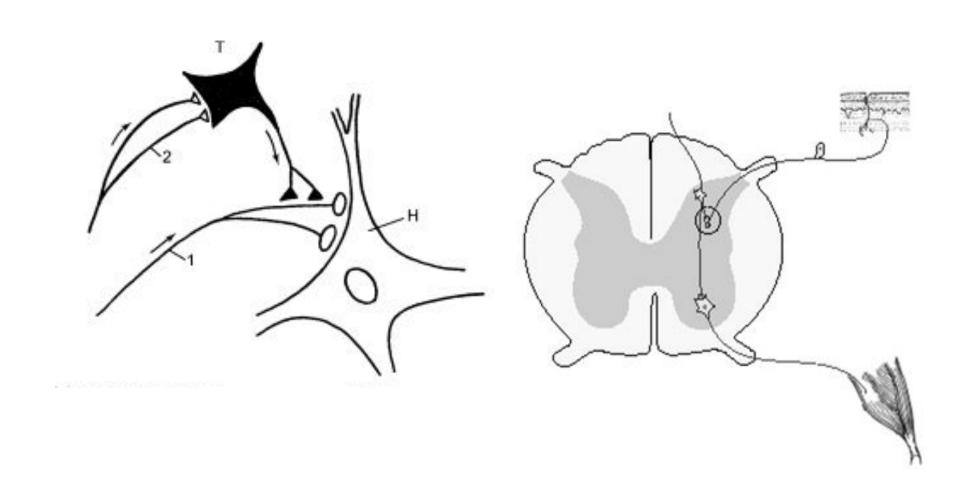
Торможение нельзя свести к утомлению нервных центров, их перевозбуждению или катодической депрессии

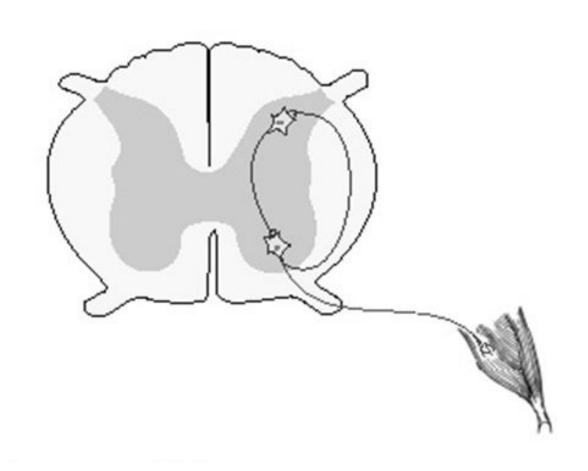


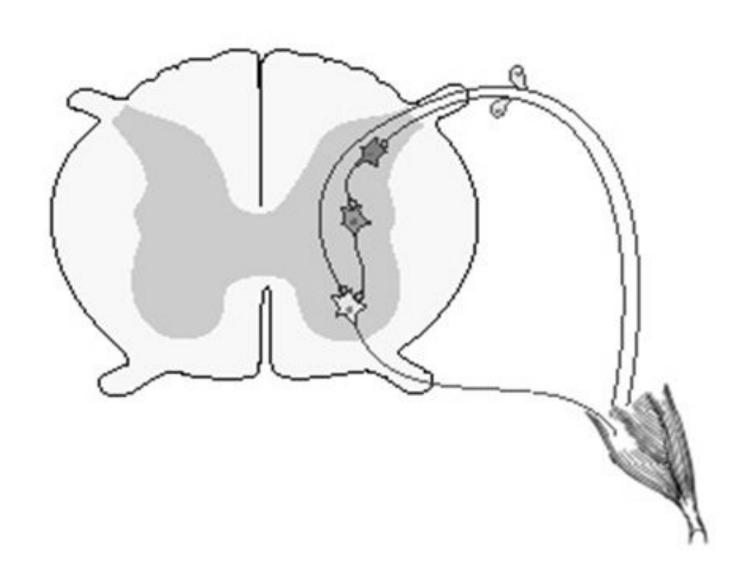
Функции торможения


Координирует функции, то есть направляет возбуждение по определенным путям к определенным нервным центрам

Выполняет охранительную, или защитную, функцию, предохраняя нервные клетки от перевозбуждения


Прямое постсинаптическое торможение гиперполяризационное (реципрокное)


Латеральное торможение


Первичное пресинаптическое деполяризационное торможение

Возвратное постсинаптическое гиперполяризационное

Аутогенное торможение гиперполяризационное

Вторичное пессимальное торможение

Чрезмерно длительное или интенсивное раздражение

Усиливается работа K-Na насос, МП увеличивается

Увеличивается Е_{порог}, от нового уровня труднее достичь от нового уровня Е_{мембр}

Координационная деятельность ЦНС

Иррадиация возбуждения – значительное увеличение силы раздражителя, приводящее к расширению области вовлекаемых в процесс возбуждения центральных нейронов

Конвергенция – НЦ высших отделов мозга являются мощными коллекторами, собирающими разнородную афферентную информацию («общий конечный путь»)

Интеграция в нервных центрах – объединение отдельных НЦ в целях осуществления сложных координированных приспособительных целостных реакций организма

Координационная деятельность ЦНС

Свойство доминанты. Доминантным называется временно господствующий в нервных центрах очаг повышенной возбудимости в ЦНС

Цефализация НС – эволюционное перемещение и сосредоточение функций регуляции и координации деятельности организма в головных отделах ЦНС

- Восходящие влияния преимущественно носят возбуждающий стимулирующий характер
- Нисходящие носят угнетающий тормозный характер