

Лекция 6

Бабалова И.Ф.

Моделирование непрерывных и дискретных функций

Блоки системы моделирования

Пояснения к решению задачи моделирования входных воздействий

Условие задачи. Определить число сгенерированных транзактов. Записать блок GENERATE, генерирующий транзакты на отрезке [100,200]. Время генерации транзактов 50000. Запустить модель 10 раз.

- 1. Аналитически возможное число заявок: 50000/150= 333,33 Округляем до целого значения и получаем 334 заявки. 2. По формулам для каждого типа распределений
- вычисляете M, D и σ .

3. Таблица запусков модели:

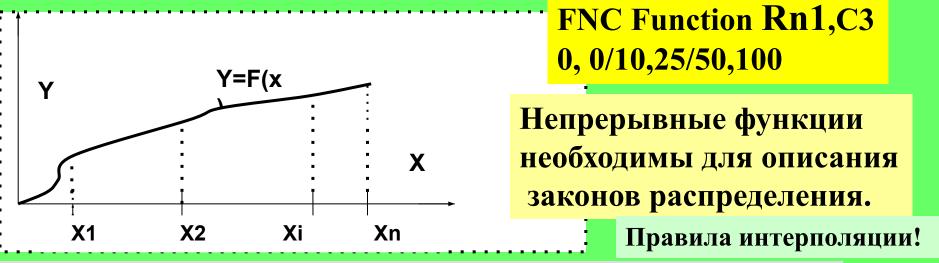
Вычисление погрешности:

$$\Delta_{Mean} = \max_{i} |Mean_{i} - M| = |152,533 - 150| = 2,533 \approx 3,0$$

 $M = 150 \pm 3$ HO T.K.

погрешность должна быть < 0,5:

$$M = (15, 0 \pm 0, 3) * 10^{1}$$


Mean	S.D.
151,632	29,606
148,875	29,69
149,211	28,62
150,095	30,151
149,986	28,848
152,533	28,481
150,111	29,396
150,544	29,757
150,979	30,036
150,802	29,702
	151,632 148,875 149,211 150,095 149,986 152,533 150,111 150,544 150,979

Непрерывные функции

Формат : Формат <имя> FUNCTION <A>,

- А генератор равномерно распределенных целых чисел
- В Тип функции С и количество ее аргументов

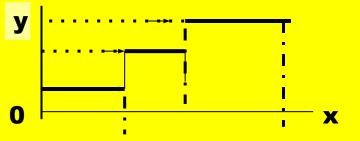
Библиотека процедур GPSS World содержит 20 функций для описания законов распределения случайных величин: Beta, Binomial, Exponential, Gamma, Inverse Gaussian, Pareto, Lognormal, Laplace, Normal и т. д.

Непрерывные функцииСтандартные функции системы

Xpdis FUNCTION RN200,C24 0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38 .8,1.6/.84,1.83/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2 .97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8

С- количество аргументов функции. C24 — это стандарт для системы GPSS World

ИСПОЛЬЗОВАНИЕ. Generate 10, FN\$Xpdis , где математическое ожидание Mx=10 Описание произвольных непрерывных функций


Output FUNCTION V\$Input,C3 1.2,10.1/20.1,98.7/33.5,689.2

Метод линейной интерполяции позволяет вычислить значение функции в промежуточных точках заданного отрезка

Описание произвольных функций в модели

Для описания входных потоков, законов обслуживания, разнообразного выбора траекторий движения заявок в модели используется два типа функций: дискретные и непрерывные.

Различия в записи функций задают способ вычисления значений функции между заданными точками

Дискретные функции

Типы функций **D, L, E, M**

Формат <имя> FUNCTION <A>,

- А Имя, положительное число, Сча, Сча*параметр
- В Буква, обозначающая тип функции и количество ее аргументов.

Сча – стандартный числовой атрибут

Примеры записи дискретных функций (() разных типов

FFDD Function RN1,D3 Дискретная числовая функция О.1,10/0.4,15/1,40 Вероятности значений: 0.1, 0.3,0.6

FFDEStation FUNCTION X\$QRA,E4 4 Дискретная атрибутивно-

1,S\$Stat1/3,S\$Stat2/5,S\$Stat3/9,S\$Stat4 значимая функция

FFDL Function P\$User, L4 Списковая числовая функция 1,20/2,50/3,70/4,15/5,90 1, Met1/2, Met2,/3,Met3/4,Met4

FFDM Function V\$V_Number, M3 Списковая атрибутивная 1,S\$Usel/2,V\$Term/3,V\$Vibor

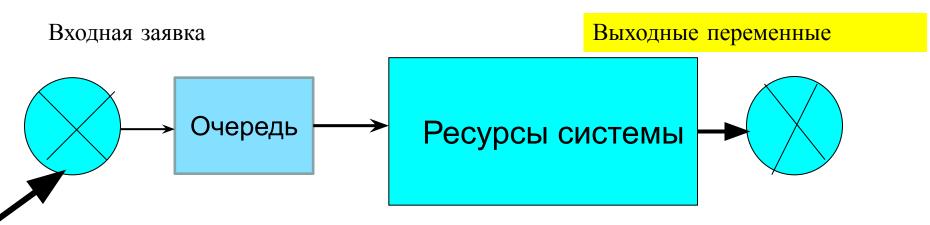
Различие между функциями L и M в том, что для функции M результат находится после определения значения параметра

Замечание: Функции L, М не имеют случайных аргументов

Использование функций распределения *ксыт* случайных событий в моделировании систем

Описание входных воздействий обеспечивается предварительным исследованием и накоплением статистики. Наиболее распространенные функции распределения — это распределение Пуассона, экспоненциальное и нормальное.

При исследовании характеристик самих систем рекомендуется использовать распределение Парето.


Принцип Парето очень часто встречается в самых разных областях. Например, в том, что 20 % людей обладают 80 % капитала, или 20 % пользователей посещают 80 % сайтов, а 20 % покупателей или клиентов (постоянных) приносят 80 % прибыли. Но следует учитывать, что в этих утверждениях фундаментальными являются не приведённые числовые значения, а сам факт их существенного различия.

Для решения задачи моделирования можно считать на основании этого принципа, что 20% характеристик сложной системы описывают ее функционирование на 80%.

Организация процесса моделирования

Система моделирует поведение реального объекта (СМО) продвижением транзакта в пространстве состояний ресурсов системы

Транзакты входят в систему в соответствии с законом их поступления и становятся в очередь при занятости объекта

Поведение объекта - ресурса - это взаимодействие статических объектов с динамическими объектами и отражение результатов этого взаимодействия в информационных объектах. Рассмотрим способы 8 отображения поведения всех компонент в системе GPSS.

Классификация абстрактных

KC&T

объектов системы GPSS World

Тип объекта	Состав	Отображение
Динамический	Транзакт и блоки управления его движением	Время моделирования С1, М1, МР1
Статический	Устройство Накопитель Переключатель	Состояние объекта: Занят, свободен Частично занят
Вычислительный	Переменные Функции Генераторы случайных чисел	Значения атрибутов объектов
Информационный	Таблицы, Списки, Очереди, Графики	Вывод в файл результатов в формате системы

Устройства (Facilities)

Все многообразие ресурсов любой СМО представляется тремя типами устройств

SEIZE

Занято

RELEASE Свободно

PREEMPT Занято

RETURN Захвачено

Свободно

LOGIC Переключатель в двух состояниях SET или RESET

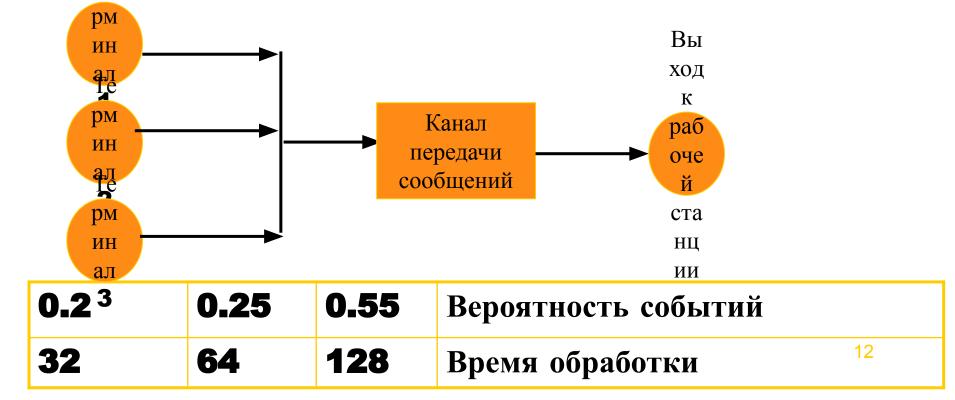
Все устройства единичной емкости. Приоритет транзакта анализируется только в типе устройства PREEMPT.

Состояние всех типов устройств отражается в их стандартных числовых и логических атрибутах:

(Сча и Сла)

Атрибуты можно извлечь из модели только информационными блоками или параметрами транзактов

KC&T

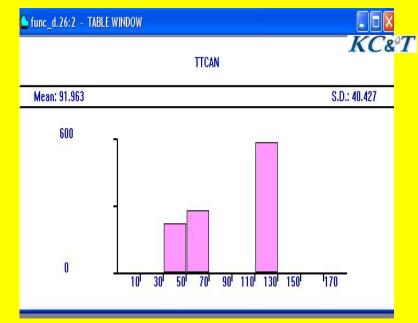

Стандартные атрибуты устройств СчА СлА

Атрибут	Значение	Атрибут	Значение
Fj	True/False	Vj	True/False
FTj	Среднее время пребывания транзакта в устройстве	Nuj инверсия Место для формулы.	False/True
FRj	Загрузка устройства	Ij-И ндикатор прерывания	True/False захвачено
FCj	Число вхождений транзакта в устройство	NIј Инверсия прерывания	False / True

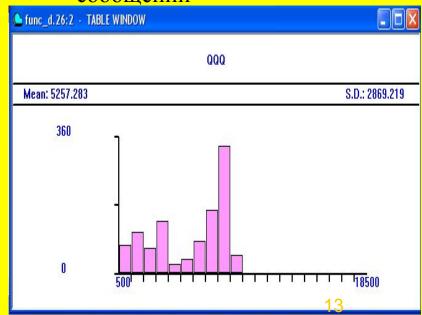
Пример использования функций и ресурса системы

Задача. На рабочую станцию поступают сообщения с трех терминалов. Поток сообщений описывается экспоненциальным законом с математическим ожиданием **\=80**. Сообщения приходят трех типов. Вероятность появления событий соответствующего времени обработки представлена в таблице.

Определить среднее время прохождения сообщений по каналу передачи сообщений.



FF1 Function RN1,D3 0.2,38/0.45,72/1.0,128 **Generate (Exponential(2,60,20))** Savevalue 10,c1 SAVEVALUE 10-,X20 SAVEVALUE 20,c1 **TABULATE ttExp ASSIGN** 5,Fn\$FF1 QUEUE Qcan Seize Can DEPART Qcan Mark Advance р5 RELEASE Can TABULATE ttcan **TERMINATE** Table mp7,10,20,10 ttcan ttExp Table X10, 50,100,10 **QQQ Qtable Qcan,500,1000,20**


> GENERATE 100000 TERMINATE 1

Модель станции

Пример

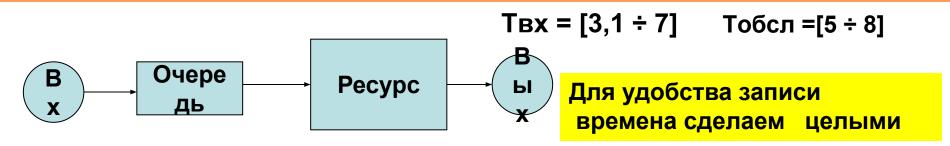
Времена передачи сообщений

Формирование очереди

Аналитическое определение параметров модели

$$\lambda = \frac{1}{T_{\text{BX}}}$$
 $\mu = \frac{1}{T_{\text{обсл}}}$ $\rho = \frac{\lambda}{\mu}$ $L = \frac{(\lambda - \mu)}{2} * T_{\text{мод}}$

Связь физических характеристик ВС с модельными характеристиками


Для определения загрузки блоков модели остается воспользоваться Формулой : ρ- загрузка ВС (ρ < 1 – всегда). Если ρ > 1, то система с очередью.

Для вычисления длины возможной очереди L потребуется задать время моделирования Т. Расчеты: $\lambda = 0,002, \mu = 0,0015$

L~220,86

Моделирование одноканальной системы

Дана СМО с одним входом и одним ресурсом для обслуживания. Время поступления заявок на обслуживание – Т вх. Время обслуживания ресурсом Т обсл. Определить среднее время обработки заявок, среднюю длину очереди и количество обработанных заявок за время обслуживания.

GENERATE 505,195
Savevalue 3,c1
Savevalue 3-,x4
Savevalue 4,c1
tabulate tab2
Assign 5,c1
QUEUE Qevm
SEIZE EVM
DEPART Qevm

ADVANCE 650,150
RELEASE EVM
Savevalue 2,c1
Savevalue 2-,x1
Savevalue 1,c1
Tabulate TAB1
TERMINATE
TAB1 table x2,10,30,50
Tab2 Table x3,10,20,60
GENERATE 1000000
TERMINATE 1

Анализ листинга результатов моделирования

GPSS World Simulation Report - Prim_mod.56.1

START TIME	END TIME	BLOCKS	FACILI	TIES STORAGES
0.000	1000000.000	19	1	0
NAME	VALUE			
EVM	10004.000	I	Імена об т	ьектов модели
QEVM	10003.000	И	их внутр	енние значения
TAB1	10900.000			
TAB2	10001.000			
VVV1	10002.000			
XXX	10005.000			

LABEL L	OC B	BLOCK TYPE	ENTRY COUNT	CURRENT	COUNT RETRY

1	GENERATE	1991	0	0	
2	SAVEVALUE	1991	0	0	
3	SAVEVALUE	1991	0	0	
4	SAVEVALUE	1991	0	0	
5	TABULATE	1991	0	0	Количество сгенерированных
6	ASSIGN	1991	0	0	заявок
7	OUEUE	1991	453	0	