

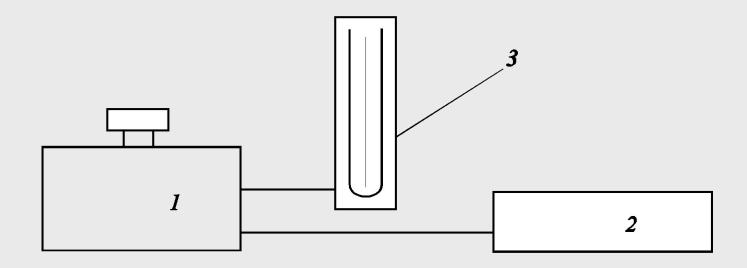
представляет...

<u>Лабораторная работа</u> <u>№1</u> ICCIEДOBAHUE ПОЛИТРОПНЫХ ПРОЦЕССОВ

Задание:

- Провести эксперимент политропного расширения воздуха.
- Рассчитать параметры состояния газа в характерных точках и построить рабочую диаграмму процессов.
- Определить показатель политропы расширения.
- Вычислить энергетические характеристики процессов.

Ознакомьтесь с лабораторной установкой



и приступайте к выполнению лабораторной работы.

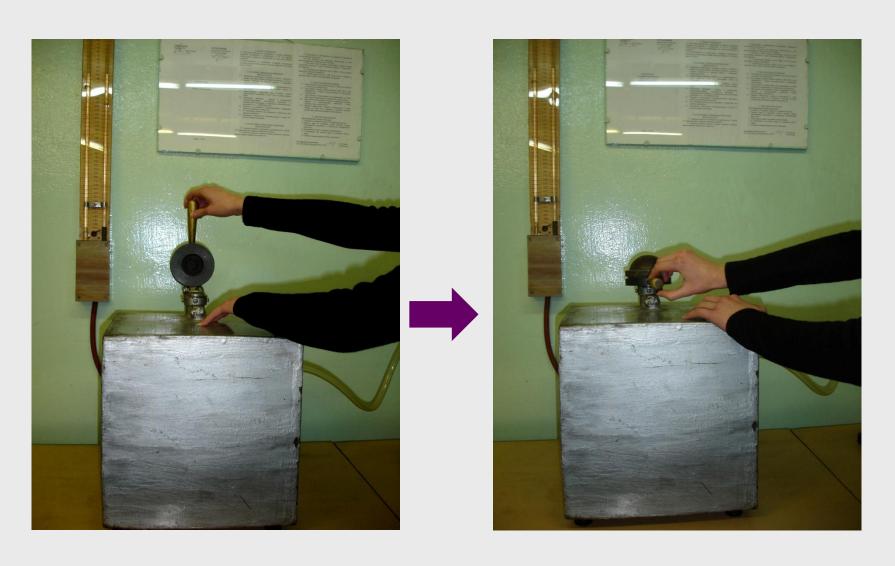
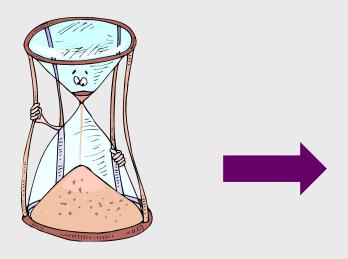


Схема лабораторной установки...

В состав установки входит металлический бак 1, объемом 35 литров, оснащенный клапаном для стравливания газа. Нагнетание воздуха в бак производится при помощи компрессора 2. Для измерения избыточного давления в баке служит U-образный жидкостной манометр 3, заполненный дистиллированной водой.

Закройте клапан.

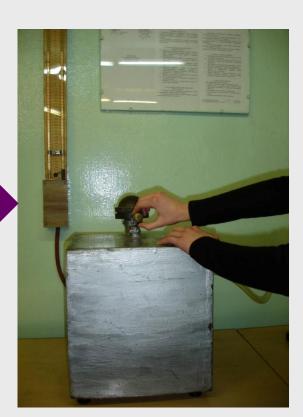


С помощью компрессора проведите нагнетание воздуха в бак до избыточного давления 500...800 мм вод. ст.

Сделайте выдержку 5-7 минут,

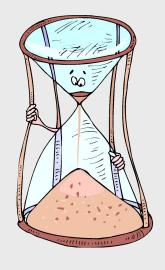
необходимую для выравнивания температур воздуха в баке и окружающей среды.

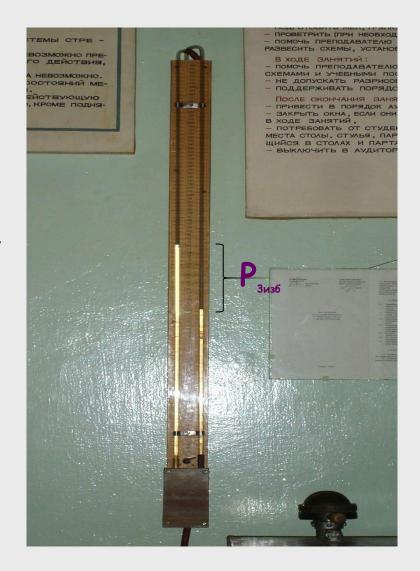
При достижении установившихся показаний жидкостного манометра определите величину избыточного давления P_{1} изб.



Откройте клапан для расширения воздуха до атмосферного давления,

дождитесь, пока избыточное давление в баке не упадет до нуля, после чего немедленно закройте клапан.




Сделайте выдержку 5-7 минут,

необходимую для нагрева воздуха в баке до комнатной температуры.

При достижении установившихся показаний жидкостного манометра определите величину избыточного давления $P_{3 \text{ изб}}$.

Определите значения

атмосферного давления и комнатной температуры

После того, как определены величины $P_{1и36}$ и $P_{3и36}$, а также параметры атмосферного воздуха, полученные данные занесите в таблицу 1.

Например так...

Таблица 1

Избыточное давление, мм вод.ст.		Параметры атмосферного воздуха	
Р _{1 изб}	P _{3 изб}	t,°C	P_{amm} , Πa
570	100	18,5	99800

Определите показатель политропного расширения воздуха.

Рассчитайте абсолютные давления в точках 1, 2, 3, помня, что

$$P = P_{\text{атм}} + P_{\text{изб}}$$

Показатель политропы процесса 1-2 вычислите по формуле:

$$n = \frac{\ln \left(\frac{P_2}{P_1}\right)}{\ln \left(\frac{P_3}{P_1}\right)}$$

Полученное значение показателя политропы проверьте на компьютере и

покажите преподавателю!!!

После его одобрения можете продолжать дальнейшие вычисления.

Определите для всех четырех характерных точек процессов параметры состояния воздуха, а также его массу.

Вычисления проводите с точностью до четырех знаков после запятой.

При расчетах используйте уравнение состояния идеального газа в виде:

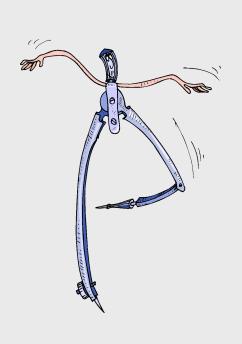
$$Pv = RT$$
, $PV = mRT$

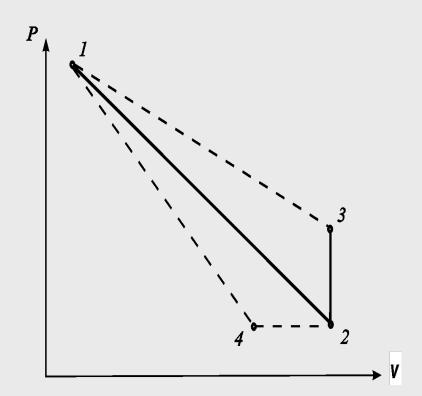
принимая значения удельной газовой постоянной воздуха

$$R = 287$$
 Джс/(кг K),

показателя адиабаты k=1,4.

Результаты вычислений параметров состояния занесите в таблицу 2


Например так...


Таблица 2

	Характерные точки процесса					
Параметр	1	2	3	4		
<i>P</i> , кПа	105,3880	99,8000	100,7801	99,8000		
<i>Т</i> , К	291.5000	288.6552	291.5000	286.9863		
υ , м ³ /кг	0.7938	0.8308	0.8308	0.8253		
т, кг	0.0444	0.0437	0.0437	0.0424		

По найденным значениям параметров состояния постройте рабочую диаграмму пяти термодинамических процессов.

Рассчитайте энергетические характеристики.

Для всех пяти процессов, изображенных на диаграмме, вычислите массовую теплоемкость воздуха C_{φ} , количество теплоты Q, изменение внутренней энергии U и энтальпии I, а также работу деформации L и располагаемую работу L' термодинамической системы.

Для нахождения изохорной и изобарной теплоемкостей используйте уравнение Майера

$$c_p - c_v = R$$

и соотношение

$$c_p/c_v = k$$

В процессах, протекающих с переменной массой, используйте её среднее значение.

Результаты вычислений энергетических характеристик занесите в таблицу 3.

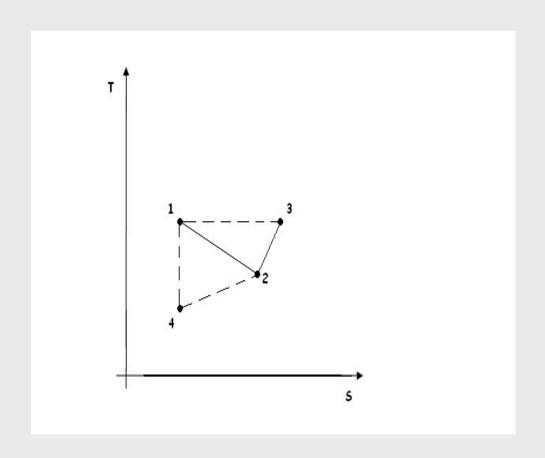

Например так...

Таблица 3

	Процессы					
Параметр	<i>1-2</i> политропный	<i>1-4</i> адиабатный	<i>4-2</i> изобарный	<i>2-3</i> изохо р ный	3-1 изотермический	
n	1,2186	1,4	0		1	
c_{ϕ} , Дж/(кг К)	-595,4	0	1004,5	717,5	бесконечность	
ΔU, Дж	-88,796	-139,916	51,134	87,775	0	
<i>L</i> , Дж	163,771	139,542	20,029	0	-167,405	
<i>Q</i> , Дж	73,685	0	71,587	87,775	-167,405	
L', Дж	199,571	195,359	0	-35.579	-167,405	
<i>∆I</i> , Дж	-124,314	-195,882	71,587	122,886	0	

По дополнительному заданию преподавателя изобразите тепловую диаграмму рассмотренных термодинамических процессов в *T-s* координатах.

Работа выполнена!

