Lecture 5.
Change of Variables for a
Double Integral.
Triple Integrals.



Let’s consider the double integral ” F(x,»)dxdy (1.1) where the domain or region (D) is
(D)

bounded by continuous curve (L) and function f is continuous at this domain. Suppose now
that region (D) is connected with another region (/A ) by formulas

x=x(& 1),y =y(&7)(1.2) so that between points belonged to (D) and (A ) one-to-one
transformation exists. It’s necessary to express the integral (1.1) in domain ( A) by changing
variables. Let’s divide the region( A ) into parts (4;) (i=1.2.....n); at the same time the region
(D) also will be divided into parts (D;). At each part (D;) let’s choose an arbitrary point

(%;,v7): and finally let’s compose the integral sum for integral (1.1) o= 3" F(x;,y;)D; -
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It’s known that domains D; and A; are connected by formula

ox ox

D, =|7(& ;)| 4, where J is called the jacobian - = DGx.y) _19 97| and
Dgn) | &
3& an

(& ,n;)1s some point belonged the region (4). This point is defined by
mean value theorem and we can’t choose it arbitrarily, but point
(x3,y1) 1n region (D;) we can take arbitrarily. Using this fact we
suppose that x, = x(&’.7).», = »(& 7). Then the integral sum has form_
o=3 fx(& ). 0E 2Ol & 2)la, - In this form it represents the integral

sum for the integral [[ s(x(e.m.»(&.m\J (& mi&in (1.3), . Existence of the
(a)
last integral follows from continuity of function f.

Finally, we can write [[ 7(x.y)dxdy= || 7(x(e.m.p(emnl&.mbgan (1.4).

(D) (4}
So, the rule for changing variables in double integral: it’s necessary to
change variables x and y by formulas (1.2) in integrating function and
multiply integrand by the jacobian.



Example 1.
Calculate the double integral
R

where the region X is bounded by
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Solution.

The region R is sketched in Figure 1.
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Figure 1.







We use change of variables to simplify the integral. By lettingu =y —z, v =%+ % , we have

Y=gl Sy —a=l, S,

y=2—3, =>y—x=-3, =>u=-3,

@ @
’y=—§+2, =}>y+§=2, =gl = 2y

X

Y= 3+4> =>'y+£=4, = v =4.

3

Hence, the pullback S of the region A is the rectangle shown in Figure 2.

v




Calculate the Jacobian of this transformation.

By—z) Bly—=)
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Then the absolute value of the Jacobian is
|6(x,y) _‘(6(@:,@))_1 B 3
— — —4 = —,
O (u, v) O (z,y) —3 4
Hence, the differential is
8 (%) 3
dady = dudv = — dudw.
2y |6(u,v)uv 4uv

As it can be seen, calculating the integral in the new variables (u, v) is much simpler:
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Example 3.
Calculate the double integral

f S

R

where the region R is bounded by the parabolas yz = y2 = 3z and hyperbolas zy = 1,
E=—

Solution.

The region A is sketched in Figure 5.
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We apply the following substitution of variables to simplify the region A :




As it can be seen, the region 5 is the rectangle. To find the Jacobian of the transformation, we

express the variables x, % in terms of u, v.
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Find the Jacobian:

bz Dz 2( 1,6 -4 wile g sl
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The relationship between the differentials is
0 (z,y) dudv
dedy = | ——— | dud —— |dudv = ;
Y |0(u,v) T ‘ 340 | i

Then we can write the integral as

2

dudv 24 1 3 3 1 1. &
f/dxdy f/ —/B—/dv—g(lnu)b«vh— 3(]_113 n2)-(2-1) = 31112.
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Polar coordinates

Ray @ = EA Coordinate Conversion

g, e
2 P(.\‘, ] ) Equations:
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The most usable is polar coordinates system; x= ecos@, y= osin @.
Jacobian for this system is

ox Ox
do 8 - ot
I ] B il ’osmj= ocos® @+sin ? @)= o . Then formula (1.4) takes
dy | pme mos@
oo o

form || S dxdy = || f(pcos @, psing) pdpdg (|

(D) (4)



Mechanical applications of
double Iintegral.

We know, that double integral [[ s(x, y)dxd; repi"esents itself the

(D)
volume of some cylindrical body bounded by plane area at bottom
and by surface f(X.y) at top. Suppose that f(x.y)=1, then, obviously,
the volume will coincide numerically with area (D):

S=[[axay (2.1)

(D)
function at region (D), then the mass of this region may be evaluated
by formula

m = || p(x.»)dxdy (2.2) — we must take the density at each point and
(D)

multiply it by elementary area dxdy and sum up all products passing
to limit; and by definition we have got double integral (2.2).



Other applications are based on this result. For example, static
moments and moments of inertia with relation to axes X and y may be

M, =[x )axdy, M, =[xz, y)dray
calculated by formulas - A 5 (2.3)
1, = [V p(x.)dxdy, 1, =[[| 2 p(x,)dxdy
(D) (D)

Next, coordinates of center of mass may be calculated by formulas
H xpdxdy H ypdxdy
M, (n _M,v_(DJ (‘) 4)
X > y[] — - .
” H pdxdy ” ” pdxdy

(D) (D)
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Triple integral. Task about mass calculation.
Definition and conditions of existence.

Let’s consider the next problem. Let some body (V) 1s given with
density o= o(M) = o(x,y,z) at each point. It 1s necessary to find the mass

m of this body. As usually, we divide body (V) into parts

part. Approximétely we can suppose that the density 1s constant and
equals to the density of chosen point e(¢,,7,, ;) throughout of each part

my 58 008,05, 6 Vs
And the mass of whole body will be

M Zp(éi,i'?z‘,é-i)ys .
iml

If diameters of all parts tend to zero, then if we pass to the limit this
equality will become exact
e = tim 3" ot ms, G (1)
i=l

.............................



Limits of this kind are called triple integrals. The last result may be
rewritten as

m= ||| p(x.5.23a7 (2)

(¥)
Now let’s define triple integral in general sense. Let function f(X.y.z)
is defined in some space domain (V). Let’s divide this space into
parts (V1).,(V2).,...,(Vy) with the help of the surface network. After this
we take an arbitrary point (¢, »,,¢,) at each part, multiply function

value f(&,7,.¢) 1n this point by the volume V; of this part and, finally,

compose the integral sum
o=, (&0, GV -
=l
Def. Finite limit I of integral sum ¢ when the most of diameters Vi
tends to zero is called the triple integral of function f(X.y.z) in domain

(V). It denotes by symbol ;= [[[ s y.20d7 = [[[ 7 (x. . 2)dxdydz

(¥) (V)
By usual way it may be got that for triple integral existence condition

lim( S —s)=0 OF tim > @ = 0 1s necessary and sufficient, where

@, = M, —m, - oscillation of function at domain (V;). So the next
statement follows: every continuous function is integrated.



Properties of integrated function and triple integrals.
Most of properties is analogical to properties of double integral and
we consider 1ts without proof.

1. If (V)=(V°)+(V*’) then [[[sav = [[[ fav+ [[[ #tv and from existence

(¥} (¥ )
of the left integral existence of the right integrals follows and vice
versa.

2. If k=const then [[[kf¥= k[[[ 72v and from existence of the right

(¥) (¥
integral existence of the left integral follows.
3. If function f and g are integrated in area (V) then function 7+ gis

integrated too and [[[(r+ g)av = [[[ fav + [[[ gav
)

(¥ (¥

4. If for integrated in area (V) functions f and g inequality 7 < gtakes
place then [[[ v <[ gar.

(¥ (¥

5. If function f is integrated then function |/] 1s integrated too and
inequality [[[ 47 < [[[|7ldv takes place.

) )
6. If integrated in area (V) function f satisfies to inequality = = f < as
then nv < [[[ v <av . By other words, we have mean value
(¥}
theorem [[[ v = u¥ (m <2 <1). In a case of continuous function this
()

formula may be rewrote as [[[ 4 = f(z 7.2) v (3).



