Лекция № 8. Предел функции

Учебные вопросы:

- 1. Предел функции в точке и на бесконечности.
- 2. Основные свойства предела функции.
 - 3. Бесконечно малые функции и их свойства.

В1. Предел функции в точке и на бесконечности

Рассмотрим функцию y=f(x), определенную на множестве X и точку x_0 , быть может, и не принадлежащую множеству X, но обладающей тем свойством, что в любой её окрестности есть точки множества X.

Определение 1. (по Гейне)

Число A называется **пределом функции** y=f(x) в точке x_0 , если для любой последовательности $\{x_n\}$ сходящейся к x_0 $\{x_n \in X \bowtie x_n \neq x_0\}$, соответствующая последовательность значений функции $\{f(x_n)\}$ сходится к числу A.

Определение 2. (по Коши)

Число А называется пределом функции f(x) в точке x_0 , если для каждого $\varepsilon > 0$ можно указать такое число $\delta > 0$, что для всех $x \in X$ и $x \neq x_0$ и удовлетворяющих неравенству $|x-x_0| < \delta$, имеет место неравенство $|f(x)-A| < \varepsilon$. Обозначение $\lim f(x) = A$ или

$$f(x) \rightarrow A$$
 при $x \rightarrow x_0$

Геометрическая интерпретация

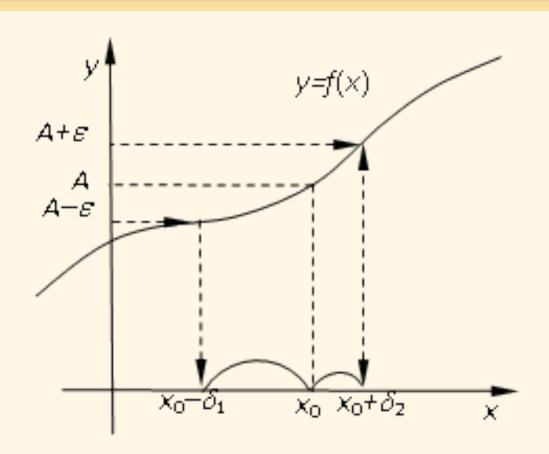
$$|x-x_0| < \delta \iff$$

$$x_0 - \delta < x < x_0 + \delta,$$

$$|f(x)-A| < \varepsilon \iff$$

$$A-\varepsilon < f(x) < A+\varepsilon,$$

$$\delta = min(\delta_1, \delta_2).$$



Предположим, что f(x) определена при сколь угодно больших значениях x, то есть X = D(f) неограниченна.

Определение 3. (по Гейне). Число А называется **пределом функции** f(x) на бесконечности, то есть при $x \to \infty \ (x \to ext), \quad , \quad \text{coomsem (mey to upa)}$ последовательность $\{f(x_n)\}$ **- Од***о***з**начают:

$$\lim_{x \to \infty} f(x) = A \text{ unu } f(x) \to A, \text{ npu } x \to \infty$$

$$(\lim_{x \to -\infty} f(x) = A \text{ unu } f(x) \to A, \text{ npu } x \to -\infty).$$

Определение 4. (по Коши)

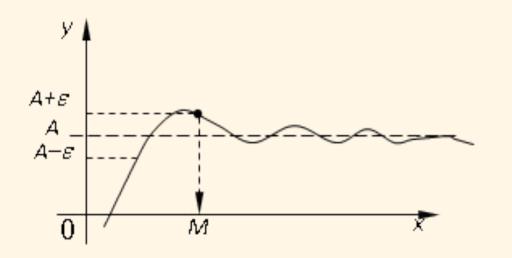
Число A называется **пределом функции** f(x) на бесконечности, то есть при $x \to \infty \ (x \to -\infty)$, если $\forall \varepsilon > 0$, $\exists Mak 0 \varepsilon$, что

 $\forall x > M \ (\forall x < -M)$

выполняется условие

$$|f(x)-A|<\varepsilon.$$

Геометрическая интерпретация



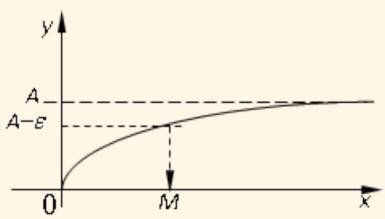


Рисунок 2

Рисунок 3

Односторонние пределы

Определение 5. $Ecnu \ f(x) \to A_1 \ npu \ x \to x_0$ только $npu \ x < x_0$, то $\lim_{x \to x_0 \to 0} f(x) = A_1$

- называется **пределом** функции f(x) в точке $x = x_0$ **слева**, a если $f(x) \to A_2$ при $x \to x_0$ только при $x > x_0$, то $\lim_{x \to x_0 + 0} f(x) = A_2$

называется **пределом** функции f(x) в точке $x = x_0$ **справа**.

Определение 6.

Число A_1 (A_2) называется правым (левым) пределом функции f(x) в точке x_0 , если $\forall \varepsilon > 0$, $\exists \delta > 0$ такое, что $\forall x \in X$ и удовлетворяющих условиям $|x-x_0| < \delta$ и $x > x_0$ ($x < x_0$) выполняется неравенство $|f(x)-A| < \varepsilon$.

Обозначения односторонних пределов

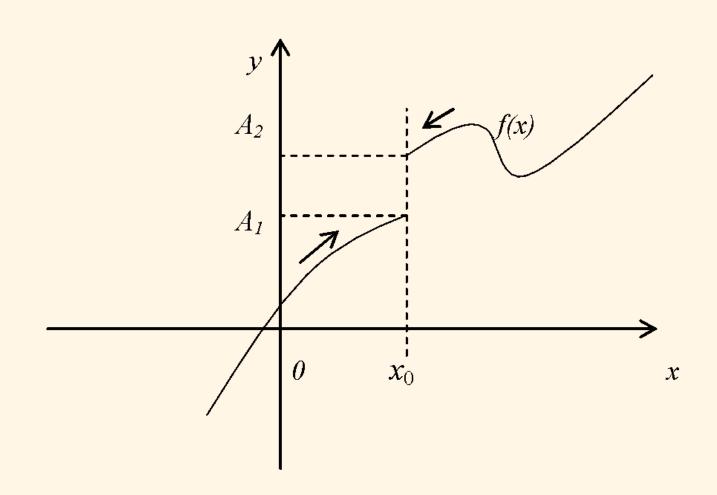
Обозначение предела справа

$$f(x_0+0)$$
 или $\lim_{x\to x_0+0} f(x)$,

Обозначение предела слева

$$f(x_0-0)$$
 или $\lim_{x\to x_0-0} f(x)$.

Односторонний предел функции



2. Основные свойства предела функции

Свойство 1. (Единственность предела). Если

$$\lim_{x \to x_0} f(x) = A \qquad \lim_{x \to x_0} f(x) = B, \quad A = B.$$

Свойство 2. Если существует $\lim_{\substack{x \to x_0 \\ \text{ограничена в некоторой окрестности } x_0}$. f(x)

Свойство 3.

Если f(x) монотонна и ограничена в некоторой окрестности точки $x = x_0$, то существует

$$\lim_{x\to x_0} f(x).$$

Свойство 4.

Если функции f(x) и g(x) имеют в точке x_0 конечные пределы A и B, то

$$1) \lim_{x \to x_0} C = C ;$$

2)
$$\lim_{x \to x_0} Cf(x) = C \lim_{x \to x_0} f(x)$$
;

3)
$$\lim_{x \to x_0} [f(x) \pm g(x)] = A \pm B$$
;

4)
$$\lim_{x \to x_0} [f(x) \cdot g(x)] = A \cdot B;$$

5)
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B}, \ (B \neq 0).$$

Свойство 5.

Если в окрестности точки x_0 , (исключая быть может саму точку x_0), выполняется условие $f(x) \le \phi(x) \le g(x)$ и

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = A,$$

то функция $\phi(x)$ также имеет предел в точке x_0 и

$$\lim_{x\to x_0}\varphi(x)=A.$$

Свойство 6.

Если в окрестности точки x_0 , (исключая быть может саму точку x_0), выполняется условие $f(x) \le g(x)$ и

$$\lim_{x\to\infty} f(x) = A, \lim_{x\to\infty} g(x) = B,$$

to A ≤ B.

3. Бесконечно малые функции и их свойства

Определение 7. Функция f(x) называется бесконечно малой в точке x_0 , если

$$\lim_{x\to x_0} f(x) = 0.$$

Обозначают $\alpha(x)$, $\beta(x)$.

Определение 8.

$$E c \pi u$$
 $\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = 0$, г $\partial e \alpha(x) u \beta(x)$

— бесконечно малые величины при х \to а, то функция $\alpha(x)$ называется **бесконечно малой более высокого порядка**, чем функция $\beta(x)$.

Определение 9.

$$Ec\pi u$$
 $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = A$, $A \neq 0$, $A = \text{const}$,

то $\alpha(x)$ и $\beta(x)$ называются бесконечно малыми одного порядка.

Определение 10.

$$E c \pi u \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1, mo функции \alpha(x) u$$

 $\beta(x)$ называются **эквивалентными** бесконечно малыми.

3аписывают $\alpha(x) \sim \beta(x)$.

Пример. Сравнить бесконечно малые функции $f(x) = x^{10}$ и f(x) = x при $x \to 0$.

Определение 11.

Бесконечно малая функция $\alpha(x)$ называется бесконечно малой порядка k относительно бесконечно малой функции $\beta(x)$, если предел $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)^k}$ конечен и отличен от нуля.

Свойства бесконечно малых функций

Свойство 1. Сумма конечного числа бесконечно малых функций при $x \rightarrow x_0$ тоже бесконечно малая функция при $x \rightarrow x_0$.

Свойство 2. Произведение конечного

числа бесконечно малых функций при $x \rightarrow x_0$ тоже бесконечно малая функция при $x \rightarrow x_0$.

Свойство 3. Произведение бесконечно малой функции на функцию, ограниченную в окрестности точки $x=x_0$ является бесконечно малой функцией при $x \rightarrow x_0$.

Свойство 4.

Частное от деления бесконечно малой функции на функцию, предел которой не равен нулю, есть величина бесконечно малая.

Свойство 5.

Для того, чтобы

$$\lim_{x \to \infty} f(x) = A$$
 необходимо и достаточно выполнение условия $f(x) - A = \alpha(x)$, где $\alpha(x)$ – бесконечно малая функция.

Свойство 6.

Если $\alpha(x) \sim \beta(x)$ и $\beta(x) \sim \gamma(x)$, то $\alpha(x) \sim \gamma(x)$.

Свойство 7.

Если
$$\alpha(x) \sim \alpha_1(x)$$
 и $\beta(x) \sim \beta_1(x)$ и

$$\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)}^{\text{TO}} = k, \qquad \lim_{x\to x_0} \frac{\alpha_1(x)}{\beta_1(x)} = k$$
или

$$\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=\lim_{x\to x_0}\frac{\alpha_1(x)}{\beta_1(x)}.$$

Литература

1. М. Л. Краснов, А. И. Киселев, Г. И. Макаренко, Е. В. Шикин, В. И. Заляпин Вся высшая математика. Том 1. Учебник. (линейная алгебра и аналитическая геометрия, введение в математический анализ). -М.: Едиториал УРСС, 2012 — с.194-206.