

Операторный метод относятся к методам расчета ПП по комплексным значениям.

Сущность операторного метода расчета схем:

На основе преобразования Лапласа,

функция времени f (t) заменяется другой функцией

F (р) как комплексная переменная $p = c + j\omega$ (p - называется оператором)

Функция f(t) называется оригиналом

Функция F (р) называется изображением

В основу преобразования Лапласа для ПП положено интегральное преобразование:

Прямое преобразование Лапласа:

$$F(p) = \int_{0}^{\infty} f(t) e^{-pt} dt$$

$$F(p) = \Lambda [f(t)]$$

$$p = c + j\omega$$

- $p = c + j\omega$ комплексная переменная (оператор)
 - ω угловая частота
 - с действительная величина комплексного числа, при c = 0, $p = i\omega$

$$e^{j\omega t}$$
 – вращающийся вектор

Обратное преобразование Лапласа:

$$f(t) = \frac{1}{2\pi \cdot j} \int_{\alpha - j\infty}^{\alpha + j\infty} F(p) e^{-pt} dp$$

ипи

$$f(t) = \Lambda^{-1} [F(p)]$$

Oригинал $f(t)$	Изображение $F(p)$
K = const	$\frac{K}{p}$
$K \cdot e^{-at}$	$\frac{K}{p+a}$
$1-e^{-at}$	$\frac{a}{p(p+a)}$
f'(t)	pF(p)-f(0)
$\int_{0}^{t} f(t)dt$	$\frac{F(p)}{p}$

1. Активное сопротивление R

$$u(t) = R \cdot i(t)$$

$$\Lambda[u(t)] = \Lambda[R \cdot i(t)] = R \cdot \Lambda[i(t)]$$

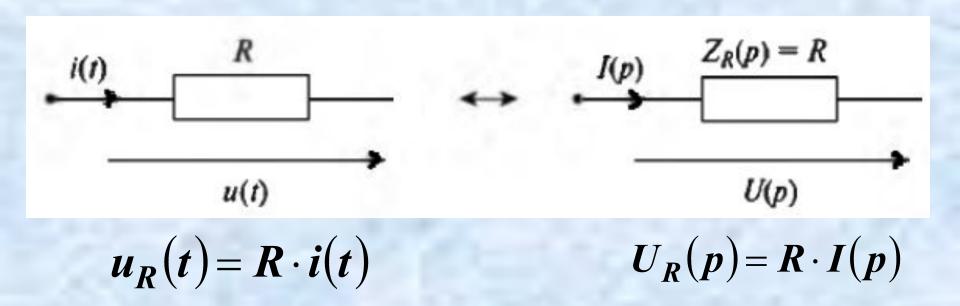
$$U(p)$$

$$I(p)$$

операторное уравнение:

$$U(p) = R \cdot I(p)$$

1. Активное сопротивление R



2. Индуктивный элемент L: $u_L(t) = L \frac{di(t)}{dt}$

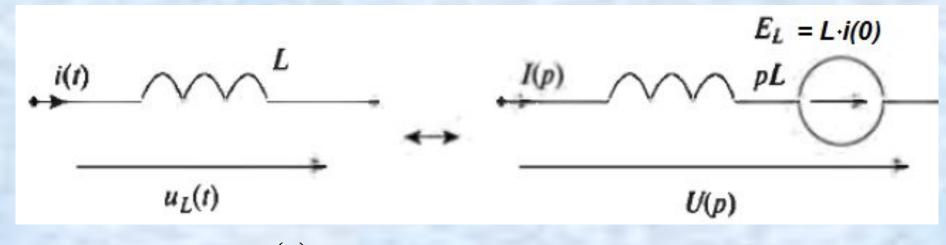
$$\Lambda[u_L(t)] = \Lambda\left[L\frac{di(t)}{dt}\right] = \Lambda[L\cdot i'(t)]$$

операторное уравнение:

$$U_L(p) = pL \cdot I(p) - E_L$$

$$E_L = Li_L(0)$$

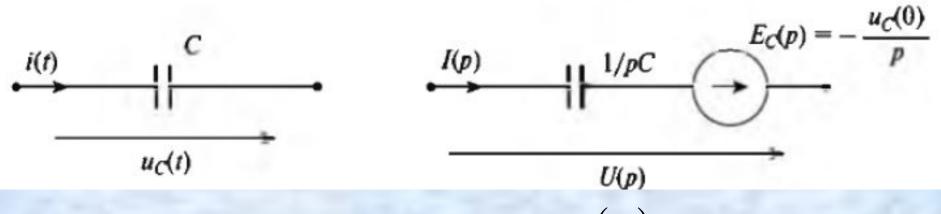
2. Индуктивный элемент L:



$$u_L(t) = L \frac{di(t)}{dt}$$

$$U_L(p) = pL \cdot I(p) - E_L$$
$$E_L = Li_L(0)$$

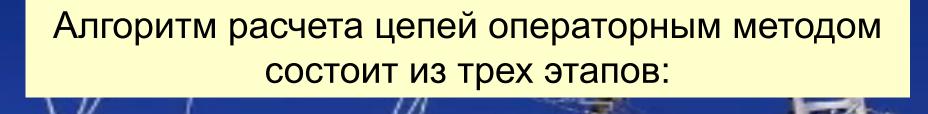
3. Емкостной элемент С:



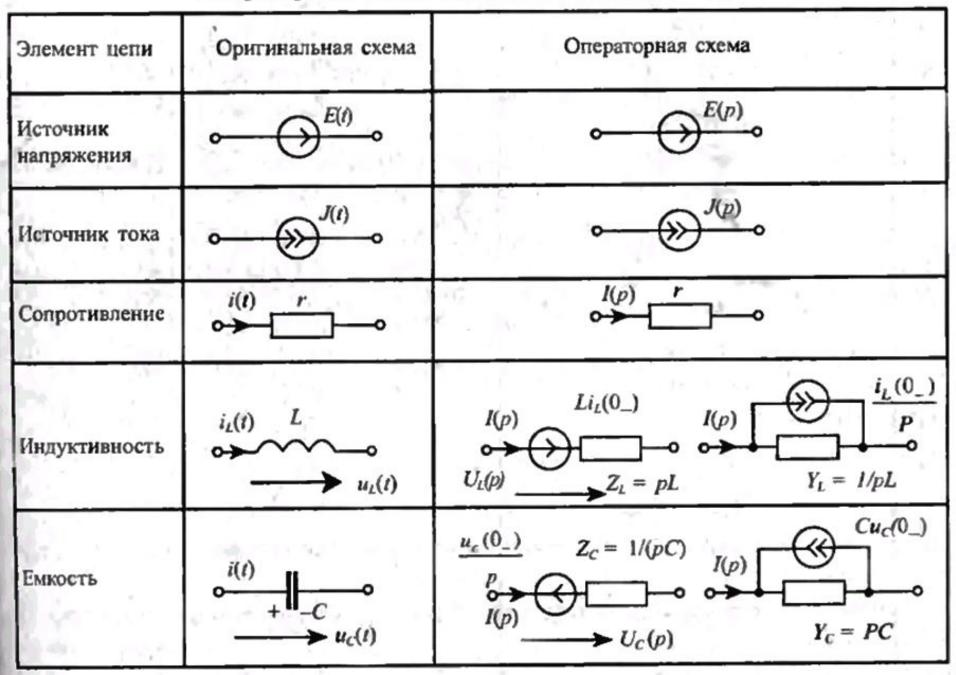
$$u_C(t) = C \frac{du(t)}{dt} \qquad U_C(p) = \frac{I(p)}{pC} - E_C(p)$$

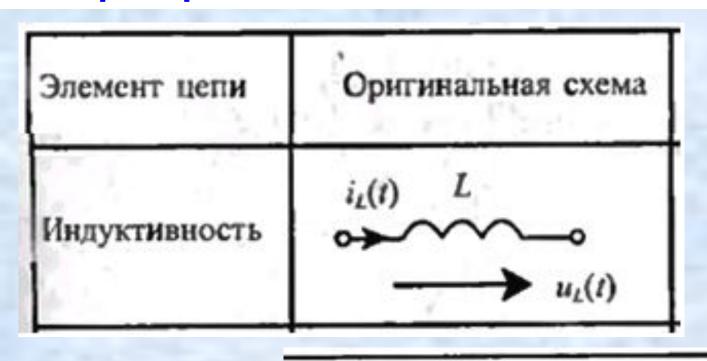
$$\boldsymbol{E}_{\boldsymbol{C}}(\boldsymbol{p}) = -\frac{\boldsymbol{u}_{\boldsymbol{C}}(0)}{\boldsymbol{p}}$$

Цепь постоянного тока	Цепь синусоидального тока в комплексной форме	Переходные процессы — операторная форма записи
I	i	I(p)
U	Ù	U(p)
E	Ė	E(p)
R	<u>Z</u>	Z(p)
G=1/R	$\underline{Y} = 1/\underline{Z}$	Y(p)=1/Z(p)
I = U/R	$\dot{I} = \dot{U}/\underline{Z}$	I(p) = U(p)/Z(P) *
$\sum_{k=1}^{K} I_k = 0$	$\sum_{k=1}^{K} \hat{I}_k = 0$	$\sum_{k=1}^{K} I_k(p) = 0$
$\sum_{k=1}^m U_k = \sum_{k=1}^n E_k$	$\sum_{k=1}^{m} \dot{U}_k = \sum_{k=1}^{n} \dot{E}_k$	$\sum_{k=1}^{m} U_{k}(p) = \sum_{k=1}^{n} E_{k}(p) *$

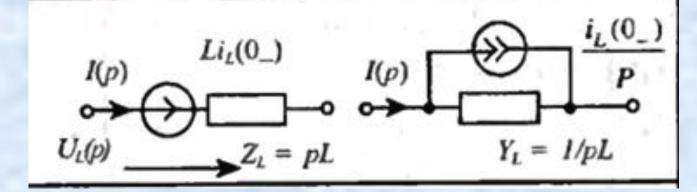


- 1 составление операторной схемы замещения (после коммутации)
- 2 расчет операторной схемы замещения
 - определение оригинала цепи по его операторному изображению



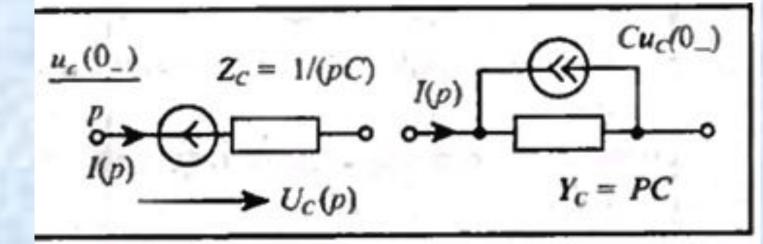


Операторная схема





Операторная схема



Функции времени и их операторные изображения

Оригинал Изображение
$$f(t) = \int\limits_0^\infty f(t)e^{-pt}\,dt$$

Функции времени и их операторные изображения

Nº	Функция времени f(t)	Изображение по Лапласу F(p)
1	Ci. t	a/p^2
2	e-a1	1/(p+a)
3	1 - e-ai	a/[p(p+a)]
4	$sin(\omega t + \psi)$	$(p\sin\psi + \omega\cos\psi)/(p^2 + \omega^2)$
5	e-atsinwt	$\omega/[(p+a)^2+\omega^2]$
6	e-alcosout	$(p + a)/[(p + a)^2 + \omega^2]$
7	te ^{-at}	$1/(p + a)^2$

Функции времени и их операторные изображения

Nº	Функция времени f(t)	Изображение по Лапласу $F(p)$
8	tsinox	$2\omega p/(p^2+\omega^2)^2$
9	tcoswt	$(p^2 - \omega^2)/(p^2 + \omega^2)^2$
10	$f(t)\sin\omega t$	$[F(p-j\omega)-F(p+j\omega)]/2$
11_	$f(t)\cos\omega t$	$[F(p-j\omega)-F(p+j\omega)]/2$
12	t"/n!	p-(n +1)
13	1(1)	1/p

Основное достоинство метода:

решение системы дифференциальных уравнений сводится к решению системы алгебраических уравнений.

Операторный метод позволяет свести

математическую операцию дифференцирования к умножению, а математическую операцию интегрирования — к делению.

Таблицы операторных соответствий можно найти в справочниках по математике, например:

Если операторное изображение

$$F(p) = rac{F_1(p)}{F_2(p)} - \partial po \delta ho - paцион. функция$$

то оригинал f(t) можно представить так:

$$f(t) = \sum_{k=1}^{n} \frac{F_1(p_k)}{F'_2(p_k)} e^{p_k t}$$

Некоторые свойства изображений:

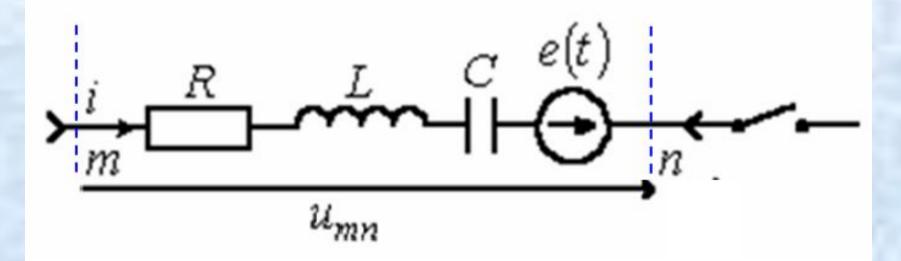
 Изображение суммы функций равно сумме изображений слагаемых:

$$\sum_{\kappa=1}^{n} f_{\kappa}(t) = \sum_{\kappa=1}^{n} F_{\kappa}(p)$$

 При умножении оригинала на коэффициент на тот же коэффициент умножается изображение:

$$Af(t)=AF(p)$$

Пусть имеем некоторую ветвь m-n,



Для мгновенных значений переменных можно записать:

$$u_{mn}(t) = iR + L\frac{di}{dt} + \frac{1}{C}\int_{0}^{t} idt + u_{C}(0) - e(t)$$

Для мгновенных значений переменных можно записать:

$$u_{mn}(t) = iR + L\frac{di}{dt} + \frac{1}{C}\int_{0}^{t} idt + u_{C}(0) - e(t)$$

Тогда на основании приведенных соотношений получим:

$$U_{mn}(p) = I(p\left(R + Lp + \frac{l}{Cp}\right) - Li(O) + \frac{u_C(O)}{p} - E(p)$$

$$I(p) = \frac{U_{mn}(p) + Li(0) - \frac{u_C(0)}{p} + E(p)}{Z(p)}$$

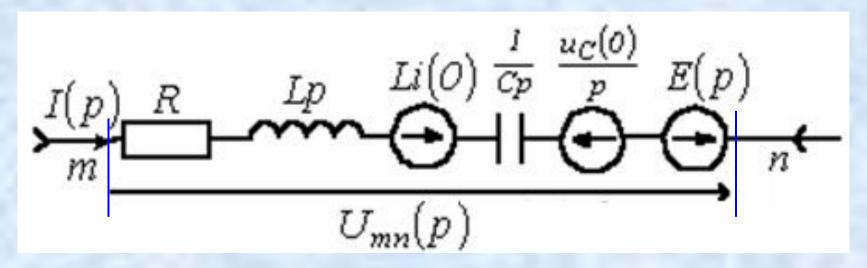
$$I(p) = \frac{U_{mn}(p) + Li(0) - \frac{u_C(0)}{p} + E(p)}{Z(p)}$$

$$Z(p) = R + Lp + \frac{l}{Cp}$$
 – операторное сопротивление

Примечание:

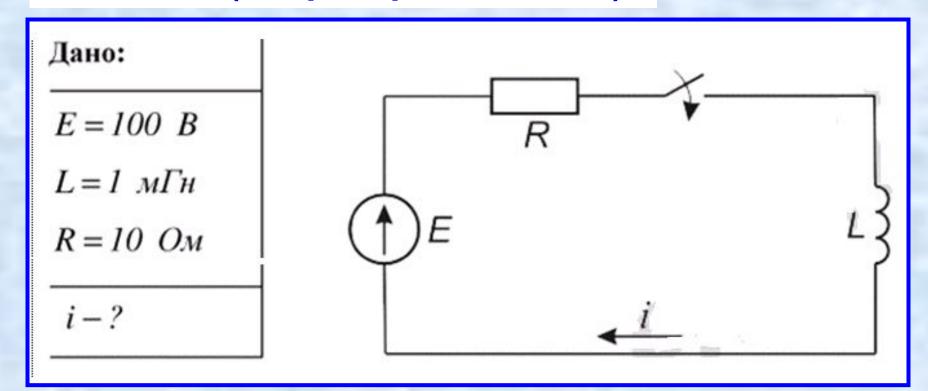
Z(p) соответствует комплексному сопротивлению $\underline{Z}(j\omega)$

$$I(p) = \frac{U_{mn}(p) + Li(0) - \frac{u_{\mathcal{C}}(0)}{p} + E(p)}{Z(p)}$$



Соответствующая операторная <u>схема замещения</u> <u>ветви</u>

ПРИМЕР (операторный метод)

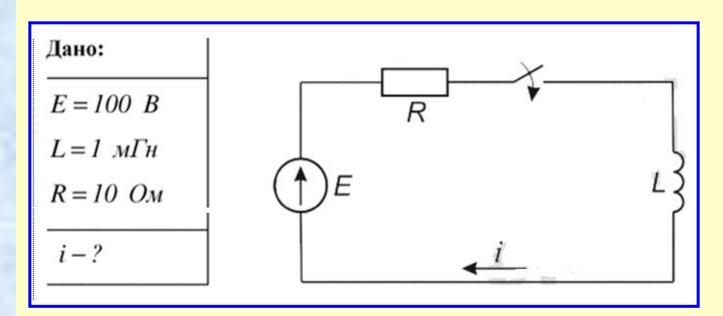


Расчет операторным методом.

1) Составим эквивалентную схему для изображений для момента времени $t=\theta_+$

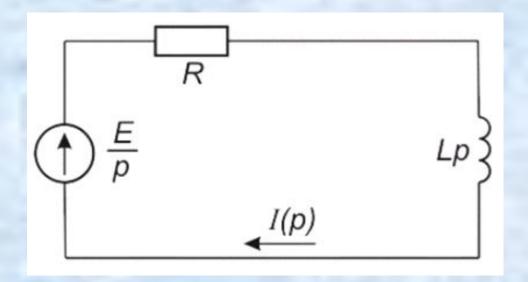
$$t = 0_{\perp}$$

$$t_L(0_{\perp}) = 0$$



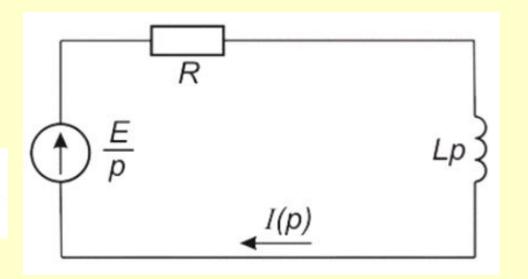
$$t = 0_{+}$$

Начальные условия $i(0) = i(0_{-}) = i(0_{+}) = 0$



$$t = 0_{+}$$

Начальные условия $i(0) = i(0_{-}) = i(0_{+}) = 0$



2) Найдем изображение тока I(p) с помощью уравнения составленного по второму закону Кирхгофа

$$I(p)(R+Lp)=\frac{E}{p}$$

$$\Rightarrow I(p) = \frac{E}{p(R+Lp)} = \frac{E}{p(Lp+R)}$$

2) Найдем изображение тока I(p) с помощью уравнения составленного по второму закону Кирхгофа

дано: $E = 100 \ B$ $L = 1 \ M\Gamma H$ Второму закону Кирхгофа $I(p)(R + Lp) = \frac{E}{p}$

$$\Rightarrow I(p) = \frac{E}{p(R+Lp)} = \frac{E}{p(Lp+R)}$$

Подставим числовые значения $I(p) = \frac{100}{p(0,001p+10)} = \frac{F_1(p)}{F_2(p)}$

Подставим числовые значения

$$I(p) = \frac{100}{p(0,001p+10)} = \frac{F_1(p)}{F_2(p)}$$

Найдем корни уравнения

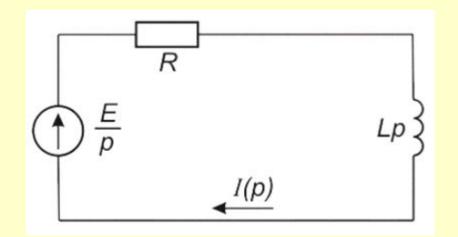
$$Z(p) = F_2(p) = 0$$

$$p(0,001p + 10) = 0$$

$$p_1 = 0$$

$$p_2 = -\frac{10}{0,001} = -10000 c^{-1}$$

Корни действительные и разные, значит переходный процесс будет апериодическим.



3) Для перехода от изображения к оригиналу воспользуемся формулой разложения для простых корней.

$$\frac{F_1(p)}{F_2(p)} \stackrel{\bullet}{=} \sum_{k=1}^n \frac{F_1(p_k) \cdot e^{p_k t}}{F_2'(p_k)}$$

$$p_1 = 0 c^{-1}$$

$$p_2 = -10000 c^{-1}$$

$$p_1 = 0$$

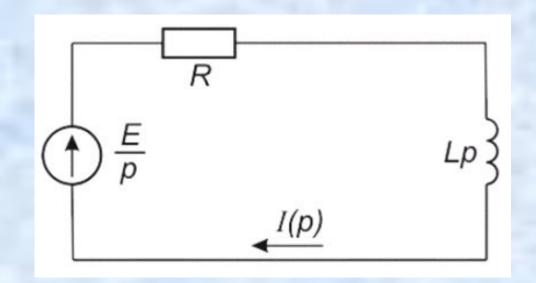
$$p_2 = -10000 \ c^{-1}$$

$$i(t) = \frac{100}{2 \times 0.001 p_1 + 10} e^{p_1 t} + \frac{100}{2 \times 0.001 p_2 + 10} e^{p_2 t} =$$

$$= \frac{100}{10} + \frac{100}{0.002(-100000) + 10} e^{-10000 \cdot t} =$$

$$= 10 - 10e^{-10000 \cdot t}, A$$

$$i(t) = 10 - 10e^{-10000 \cdot t}, A$$



III) Построим график изменения тока *i* в функции времени на интервале

of
$$t = 0$$
 do $t = 4 \cdot \tau$

$$\tau = \frac{1}{|p|} = \frac{1}{100000} = 0,0001 \ c^{-1}$$

$$4 \cdot \tau = 4 \cdot 0,0001 = 0,0004 \ c^{-1}$$

