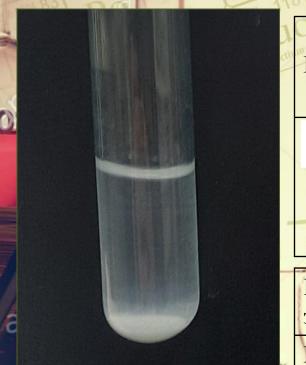
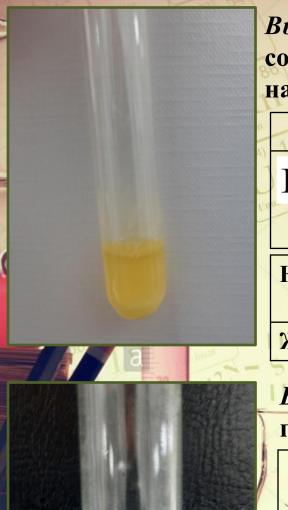



Тема: Идентификация неорганических веществ.


Задание 1: Выполнение характеристических реакций на катионы.

Выполнение реакции: В пробирку помещают 1-2 капли исследуемого раствора, прибавляют 5-6 капель реактива Несслера.

Ион	Реагент	Уравнение реакции 15 39 91 224 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NH ₄ ⁺	Реактив Несслера	$NH_4^+ + 2[HgI_4] + 4KOH \rightarrow (OHg_2NH_2)$ $\downarrow +7I + 3H_2O$


Наблюдаемый эффект	Условия выполнения	Мешающие ионы
Желто-бурый осадок	Щелочная среда	$Fe(OH)_3, Cr(OH)_3,$
a		$\mathcal{C}u(\mathit{OH})_2$, $\mathit{Ni}(\mathit{OH})_2$ и т. д.

Выполнение реакции. В пробирку помещают 3-4 капли исследуемого раствора, прибавляют 4-5 капель оксалата аммония. Если осадок не выпадает, пробирку необходимо слегка подогреть.

Ион	Реагент	Уравнение реакции 38 88.90585 3
Ca^{2+}	$(NH_4)_2C_2O_4$	$CaCl_2 + (NH_4)_2C_2O_4$ $\rightarrow CaC_2O_4 \downarrow + 2NH_4Cl$
110	12-18	$\rightarrow CaC_2O_4 \downarrow +2NH_4Cl$
all all a	-/ 1	$Ca + C_4O_4 \rightarrow CaC_2O_4 \downarrow$

	Условия	Мешающие
эффект	выполнения	ионы
Белый осадок	Нейтральная ср.	Ba^+ и Sr^+

Вып-е реакции. В пробирку помещают 1-2 капли р-ра соли бария, 5 капель раствора, $K_2Cr_2O_7$ 5 капель ацетата натрия и нагревают пробирку на водяной бане.

Ион	Реагент	Уравнение реакции
Ba ²⁺	K_2CrO_4	$BaCl_2 + KCrO_4 \rightarrow 2KCl + BaCrO_4 \downarrow$
	1100 11	$Ba + CrO_4 \rightarrow BaClO_4 \downarrow$

Наблюдаемый эффект	Условия Мешающ
	выполнения / ие ионы
Желтый осадок	Кислая среда в в при

Вып-е реакции. В пробирку помещают 1-2 капли иссл-го раствора, прибавляют 1-2 капли серной кислоты.

Ион	Реагент	Уравнение реакции
Ba ²⁺	H_2SO_4	$BaCl_2 + H_2SO_4 \rightarrow BaSO_4 \downarrow + 2HCl$
75 NAVANA		$Ba + SO_4 \rightarrow BaSO_4 \downarrow$

1,5	Наблюдаемый эффект	Условия вып-ия	Меш. ионы	
	Белый осадок	Кислая среда	- 6	

Выполнение реакции. К 2 - 3 каплям соли алюминия в присутствии СН₃СООН добавляют 1 - 2 капли раствора алюминона. В присутствии алюминия появляется розовая окраска, которую сравнивают контрольным опытом. Для выполнения контрольного опыта в пробирку помещают все указанные выше реактивы, кроме соли А 1³⁺

11	Ион	Реагент	Уравнение реакции
	Al^+	$C_{22}H_{23}N_3O_9$	$AlCl_3 + 3CH_3COOH + C_{22}H_{23}N_3O_9 \rightarrow$
1	[time]	- ti	$\rightarrow Al(OH)_3C_{22}H_{23}N_3O_9 + 3CH_3COOCl$
		V	Comment RF/DI

	Наблюдаемый	Условия	Мешающие ионы
	эффект	выполнения	138 9051 57 140.116 50
1	Светло красный	Кислая среда	$Ca^{2+}, Cr^{3+}, Fe^{3+}$
3	осалок		

Выполнение реакции. К 2-3 каплям раствора соли хрома (Ш) прибавляют 4-5 капель 2М NaOH. В качестве реактива на хромат-ионы можно использовать раствор бензидина. В кислой среде ионы CrO4 2- окисляют бензидин в соединение синего цвета

- S 4000 82	эндин в сосдинен	Пости	a	Patrices 44.95591 21 00
		Ион Реаге	нт Уравне	ние реакции
O:		Ст ³⁺ Бензидин	H Rubing	38 88.90585 39 91.24 Strontium Surium 21 5) 137.327 56) 174.9660
		Наблюдаемый эффект	Условия выполнения	Мешающи е ионы
		Синий осадок	Кислая ср.	1 Language R F D 105
a		1 H2N	S' E	28 9054 57 40 116 58 40.5076 59 14
		75 XS add 3	3 (3 (3) 22) 89/20 3 (3) (3) (3) (3) (3) (3) (3) (3	Com Service 91/201200 92/1220
a	a	a	a	a

Выполнение реакции. В пробирку помещают 2-3 капли раствора соли железа (Ш) и 2-3 капли реактива.

Ион	Реагент	Уравнение реакции
Fe^{3+}	$K_4Fe(CN)_6$	$4FeCl_2 + 3K_4Fe(CN)_6 \rightarrow$ $\rightarrow Fe_4[Fe(CN)_6]_3 \downarrow +12KCl$
Cunnoctium	0.	$4Fe + 3[Fe(CN)_6] \rightarrow Fe_4[Fe(CN)_6]_3 \downarrow$

Набл-й эффект	Условия вып-я	Мешающие ионы
Темно-синий	Слабокислая	восс — ли, восст — щие
осадок	cp.	ионы Fe^{3+} до Fe^{2+}

Вып-е реакции. К 1-2 каплям раствора соли железа (III) прибавляют 5-6 капель раствора тиоцианата.

Ион	Реагент	Уравнение реакции про 58 / 144 550 /
Fe^{3+}	NH_4SCN	$FeCl_3 + 3NH_4SCN \rightarrow 3NH_4Cl + Fe(SCN)_3 \downarrow$
75 %		$Fe + 3SCN \rightarrow Fe(SCN)_3 \downarrow$

Набл-й эффект	Условия вып-ия	Меш-е ионы
Кроваво-красный цвет	Слабокислая ср.	a

_{Fe²⁺}Выполнение реакции. К 2-3 каплям соли железа (II) прибавить 2-3 капли реагента.

Ион	Реагент	Уравнение реакции
Fe^{2+}	$K_3[Fe(CN)_6]$	$3FeSO_4 + 2K_3[Fe(CN)_6]$
0,	TOH	$\rightarrow 3K_2SO_4 + Fe_3[Fe(CN)_6]_2$
		$3Fe + 2[Fe(CN)_6] \rightarrow Fe_3[Fe(CN)_6]_2 \downarrow$
1		1023) (Burnin LU LTG

18	Наблюдаемый эффект	Условия выполнения	Мешающи е ионы
	Синий осадок	Слабокислая ср.	Rutherfording Trubulum

Выполнение реакции. К 1-2 каплям (не более) соли марганца (II) прибавляют 8-12 капель 6 н HNO₃ после чего в раствор вносят очень небольшое количество порошка NaBiO₃ и встряхивают. В присутствии марганца жидкость над осадком окрашивается в малиновый цвет.

марганца жидкость над	осадко	м окраши	вается в малиновый	цвет.
and the same of th	Ион	Реагент	Уравнение реакци	IN 62 38 88 government
	Mn^{2+}	NaBiO ₃	$2MnSO_4 + 5NaBiO_3 +$	+ 16 <i>HNO</i> ₃ →
	1. 3	()	$2HMnO_4 + NaNO_3 + 5Bi(NO_3)$	$O_3 + 2Na_2SO_4 + 7H_2O_3$
	2Mn + 5NaBiO + 14H		$2Mn + 5NaBiO + 14H \rightarrow 2MnO$	$t_4 + 5Bi + 5Na + 7H_2C$
		H_{2N}	Radium Haucinia	P Religionarium (numium)
	Наблюд	цаемый эфф	рект Условия выполнения	Мешающие
	Малин	овый осадо	1- 1001	C Pr N
3 44	mi		CON CONTRACTOR	See Landinian See

Выполнение реакции. К 1-2 каплям раствора Cu 2+ прибавляют 6-8 капель раствора NH₄OH

Ион	Реагент	y	равнение реакции
Cu ²⁺	NH_4OH	CuSO,	$_{4} + 4NH_{4}OH \rightarrow [Cu(NH_{3})_{4}]SO_{4} \downarrow + 4H_{2}O_{4}$
Набл-й	эффект	1	Усл. вып-я Меш. ионы
Светло-	голубой осад	ок	Кислая ср. 12/

Выполнение реакции. К 1-2 каплям раствора Сu (II) прибавляют 4-5 капель реагента.

H2N Rutterforation [pure]			
Реагент	S	Уравнение реакции	и
$K_4[Fe(CN)_6]$	2 d	$CuSO_4 + K_4[FeCu_2Fe((CN)_6)]$	$(CN)_6] \rightarrow +2K_2SO_4$
	20	$[Su + [Fe(CN)_6] \rightarrow Cu$	$Cu_2[Fe(CN)_6]$
фект		Условия вып-я	Меш. ионы
	(0)	$K_4[Fe(CN)_6] \xrightarrow{2}$	$K_{4}[Fe(CN)_{6}] \xrightarrow{2CuSO_{4} + K_{4}[Fe(CN)_{6}]} \xrightarrow{2Cu_{2}Fe((CN)_{6})} \xrightarrow{2Cu_{2}Fe(CN)_{6}] \rightarrow 0$

Кислая среда

 Fe^{3+}

Красно-бурый осадок

Выполнение реакции. К 2 каплям раствора соли кобальта прибавляют 8-10 капель насышенного раствора роданида аммония, 1-2 кристаллика фторида натрия (если в растворе присутствует Fe 3+), 10 капель изоамилового спирта. Взбалтывают смесь и дают отстояться органическому слою, который в присутствии кобальта окрашивается в синии цвет.

30	a onput		5150000 Strong
	Ион	Реагент	Уравнение реакции
	Co ²⁺	KSCN	$Co(NO_3)_2 + 2NH_4SCN \rightarrow Co(SCN)_2 + 2NH_4NO_3$
		H_{2N}	$Co + 2SCN \rightarrow Co(SCN)_2 \downarrow$
la l	Набл. эф	фект	Усл. вып-я Меш.ионы
		і́ р-р и сине на пов-ти	е Орган-ая среда
- 75 ×			09/22/20090/200200

Выполнение реакции. На полоску фильтровальной бумаги наносят каплю раствора соли никеля, потом каплю раствора винной кислоты, а затем каплю раствора диметилглиоксима и каплю NH₄OH Или к 1-2 каплям раствора соли Ni(II) добавляют равный объем раствора диметилглиоксима и 1-2 капли 2 н. раствора NH₃ Выпадает красный осадок.

-	0		10 1 38 88 90585 20 Min
	Ион	Реагент	Уравнение реакции
1	Ni ²⁺	$C_4H_8N_2O_2$	$NiSO_4 + 2NH_4OH + 2C_4H_8N_2O_2 \rightarrow$
	1/100	1-4	$\rightarrow Ni(C_4H_8N_2O_2)_2 \downarrow + (NH_4)_2SO_4 + 2H_2O$
	3	`	$Ni + 2C_4H_8N_2O_2 + 2NH_3 \rightarrow$
		H2N	$\rightarrow Ni(C_4H_7N_2O_2)_2\downarrow +2NH_4$
		2	91.98.9054 577
	Набл эф	hair	Ven prin a Many Works 50%

Набл. эффект	Усл. вып-я	Меш. и	оны 59/4
Розовый оттенок на б умаге	Кислая ср.	Fe^{2+}	Cu ²⁺

Выполнение реакции. К 3-5 каплям исследуемого раствора прибавляют 2-3 капли KI.

Ион	Реагент	Уравнение реакции
Pb^{2+}	KI	$Pb(NO_3)_2 + 2KI \rightarrow PbI_2 \downarrow + 2KNO_3$
0	LOH	$Pb + 2I \rightarrow PbI_2 \downarrow$

Набл. эффект	Усл. вып-я Меш-е ионы
Желтый осадок	Кислая ср. 37 (226)

Вып-е реакции. К 3-5 каплям иссл-го р-ра приб-ют 3-5 капель р-ра хромата калия.

еакции 🧳 🥫
$\rightarrow PbCrO_4 \downarrow +2KNO_3$
$\downarrow \rightarrow PbCrO_4 \downarrow$

Набл. эффект	Усл. вып-я	Меш. ионы	
Желтый осадок	Кислая ср.	Ba ²⁺	16

Выполнение реакции. В пробирку помещают 2-3 капли растворов соли магния и хлорида аммония, затем прибавляют 2-3 капли раствора Na_2HPO_4 . Перемешивают содержимое пробирки и добавляют NH_4OH до слабого запаха и нагревают на водяной бане. Из разбавленных растворов осадок выпадает не сразу. При отсутствии осадка содержимое пробирки оставляют на некоторое время; только после этого можно сделать вывод об отсутствии Mg

Белый осадок

Ион	Реагент	Уравнение реакции
Mg^{2+}	Na_2HPO_4	$MgSO_4 + NH_4OH + Na_2HPO_4 \rightarrow$
	How	$\rightarrow MgNH_4PO_4\downarrow +Na_2SO_4+H_2O$
\	3,5	$Mg + HPO_4 + NH_4 \rightarrow MgNH_4PO_4 \downarrow$
Наблюда	аемый	Условия Мешающие ионы

Кислая среда

Задание 2: Выполние характеристических реакций на анионы.

Выполнение реакции. К 2-3 каплям исследуемого раствора прибавить 2-3 капли HCl и 2-3 капли $BaCl_2$.

Выполнение реакции. В пробирку помещают 3-4 каплям исследуемого раствора, приливают 3-4 капли HCl.

Ион	Реагент	Уравнение реакции
CO ₃ ²⁻	HCl	$Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 \uparrow + H_2O$
	-3OH	$CO_3 + 2H \rightarrow CO_2 \uparrow + H_2O$
V 1	K	(Sexion) Ba LU 170.49 72)

Набл.эффект	Усл.вып-я	Мешающие ионы 104 (262)
Выделение 💯	Кислая	$SO_3^{2-}, S_2O_3^{2-}$
газов	среда	303 ,3203

Выполнение реакции. К 2 каплям соли магния прибавляют 4 капли NH_4Clu 2 капли NH_4OH . Затем прибавляют 3-4 капли Na_2HPO_4 .

Ион	Реагент	Уравнение реакции
PO ₄ ³⁻	$MgSO_4$	$MgSO_4 + NH_4Cl + NH_4OH + NaHPO_4 \rightarrow$
	T-SOH	$\rightarrow MgNH_4PO_4 + NaCl + H_2O + NH_4$
150	1	$Mg + NH_3 + HPO_4 \rightarrow MgNH_4PO_4$

Наблюдаемый эффект	Условия вып-я	Мешающие ионы (262) 10
Белый осадок	Кислая ср.	AsO ₄ ³⁻

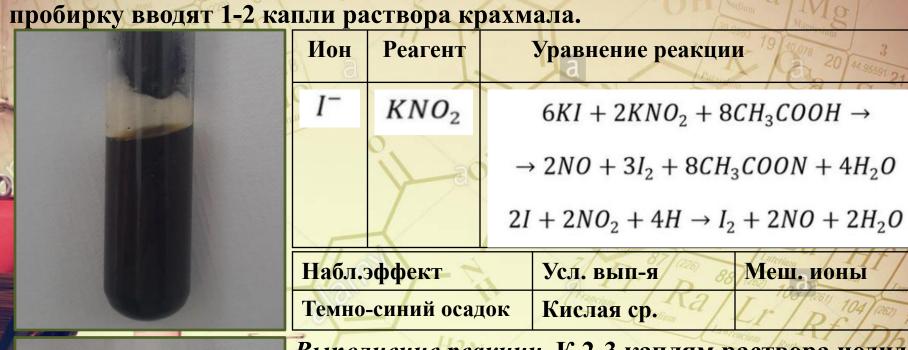
Выполнение реакции. К 2-3 каплям раствора сульфита прибавляют несколько капель 2М НС1 и по каплям раствор иода, который в присутствии SO_3^{2-} обесцвечивается.

	Ион	Реагент	Уравнение реакции 20/44.955912174
IN	SO ₃ ²⁻	I_2	$Na_2SO_3 + I_2 + H_2O \rightarrow Na_2SO_4 + 2HI$
1		1	$SO_3 + I_2 + H_2O \rightarrow SO_4 + 2I + 2H$

Наблюдаемый эффект	Условия выполнения	Мешающие ионы
Р-р обесцветился	Кислая среда	7) 40.16 50 / 10

Выполнение реакции. К 2-3 каплям раствора хлорида прибавляют 1-2 капли 1 M AgNO₃,

Ион	Реагент	Уравнение реакции
Cl-	$AgNO_3$	$FeCl_3 + 3AgNO_3 \rightarrow Fe(NO_3)_3 + 3AgCl \downarrow$
etum		$Ag + Cl \rightarrow 3AgCl \downarrow$
	11	Rubial Strondium V 39 91.224


Набл. эффект	Усл. вып-я	Мешающие ионы	Greenium
Творожный осадок	Кислая ср.	37 (226) CO CAMERIAN INCOME	F

Выполнение реакции. К 2-3 каплям раствора хлорида прибавляют 1-2 капли раствора $Pb(NO3)2Pb(NO_3)_2$

Ион	Реагент	Уравнение реакции
Cl-	$Pb(NO_3)_2$	$2FeCl_3 + 3Pb(NO_3)_2 \rightarrow 2Fe(NO_3)_3 + 3PbCl_2 \downarrow$
a land		$Ag + 2Cl \rightarrow PbCl_2 \downarrow$

Набл. эффект	Условия вып-я	Мешающие ионы
Творожный осадок	Кислая ср.	а

Выполнение реакции. К 1-2 каплям раствора иодида прибавляют столько же капель нитрита калия KNO_2 и подкисляют $6MCH_3COOH$ Одновременно в

Выполнение реакции. К 2-3 каплям раствора иодида					
прибаг	вляют 5-6 к	апли раствора Pb(NO ₃) ₂			
Ион	Реагент	Уравнение реакции			
1-	1				

HUH	1 cal chi	Уравнение реакции
I-	$Pb(NO_3)_2$	$2KI + Pb(NO_3)_2 \rightarrow 2KNO_3 + PbI_2 \downarrow$
	The State of the S	$2I + Pb \rightarrow PbI_2 \downarrow$
100000	the second state of the second	

Набл. эффект	Усл. вып-я	Меш. ионы
Желтый осадок	Кислая ср.	d

Выполнение реакции. К 1 - 2 каплям испытуемого раствора прибавяют NO_2 , и др. окилители (CrO_4^{2-} , MnO4 NO_4 ту же реакцию и поэтому мешает обнаружению нитрат – иона.

-) до	тет туже реакци		my wemaer	обпаружению питрат иона	_ 3
1000 E		Ион	Реагент	Уравнение реакции	SC 21
A1801		NO ₃	$(C_6H_5)_2NH$	$Pb(NO_3)_2 + (C_6H_5)_2NH \rightarrow PbNH + 2C_6$	H_5NO_3
E CROT		1		Crimin Ba LU 19668 71	178.49 72 Hf
		Наблюд эффект		Условия Мешан выполнения ионы	ощие
		Темно-	синий осадо	к Кислая среда	utnium

Выполнение реакции. К 1-2 каплям раствора иодида прибавляют столько Одновременно в пробирку вводят 1-2 капли раствора крахмала.

Наблюдаемый эффект	Усл. вып-я	Меш. ионы
Синий осадок	Кислая среда	254 57 140 no 58 Vanaon -

Выполнение реакции. К 1 - 2 каплям испытуемого раствора прибавить 1-2 капли $1M_{H_2SO_4}$; слегка подогревают на водяной бане.

Ион	Реагент	Уравнение реакции
CH ₃ COO-	H_2SO_4	$3CH_3COONa + H_2SO_4 \rightarrow Na_2SO_4 + 2CH_3COOH$
0	1 SOF	$CH_3COO + H \rightarrow CH_3COOH$

Набл. эффект	Усл. вып-я Меш. ионы
Запах уксуса	Кислая ср. 220 Гислин / Н

Выполнение реакции. К 1 - 2 каплям испытуемого раствора прибавить 4-5 капель $FeCl_3$; слегка подогревают на водяной бане.

Ион	Реагент	Уравнение реакции
CH ₃ COO-	$FeCl_3$	$3CH_3COONa + FeCl_3 \rightarrow (CH_3COO)_3Fe + 3NaCl$
a		$3CH_3COONa + Fe \rightarrow (CH_3COO)_3Fe + 3Na$

Набл. эффект	Усл. вып-я	Меш. ионы
Коричневый осадок	Кислая ср.	$SO_3^{2-}PO_4^{3-}CO_3^{2-}$

