
(2 * 3) + (2 / 4) – (4 + 3)

Find Prefix - + * 2 3 / 2 4 + 4 3
Evaluate Prefix

Find Postfix 2 3 * 2 4 / + 4 3 + -
Evaluate Postfix

Queues

Introduction to Queues

• A queue is a waiting line – seen in daily life

– A line of people waiting for a bank teller
– A line of cars at a toll both

• What other kinds of queues can you think of

The queue has a front and a rear.

$ $

RearFront

 Front Rear

1 2 3 4

Front Rear

 2 3 4

 Front Rear

1 2 3

Add 4 to the Queue

Remove the element
 from the Queue

Original Queue

In Queue
a. Items can be removed only at the front
b. Items can be added only at the other end, the back

The Queue As an ADT

1. A queue is a sequence of data elements
2. Basic operations

a. Enqueue (add element to back)
b. Dequeue (remove element from front)

Enqueue & Dequeue operations

Types Of Queues

• Linear Queue

• Circular Queue

• Double Ended Queue (Deque)

• Priority Queue

Double Ended Queue
Double ended queues, called deques for short, are a generalized form
of the queue. It is exactly like a queue except that elements can be
added to or removed from the head or the tail.
However, no element can be added and deleted from the middle.

In the computer’s memory, a deque is implemented using either a
circular list or a circular doubly linked list.

In a deque, two pointers are maintained, LEFT and RIGHT, which
point to either end of the deque. The elements in a deque extend from
the LEFT end to the RIGHT end and since it is circular, Dequeue[N–1]
is followed by Dequeue[0].

There are two variants of a double-ended queue. They include :
• Input restricted deque In this, insertions can be done only at one of

the ends, while deletions can be done from both ends.
• Output restricted deque In this deletions can be done only at one of

the ends, while insertions can be done on both ends.

• deque is useful for priority queuing.

• A deque can model a station where cars can enter and leave on the left or right side
of a line, but only the cars at the ends can move in and out.

• common application of the deque is storing a software application's list of undo
operations.

Array Implementation -Dequeue
When an item is taken from the queue, it always comes from the

front.
This a dequeue operation.

Array Implementation -Enqueue
When an item is inserted into the queue, it always goes at the end

(rear).
This a enqueue operation.

LINKED REPRESENTATION OF QUEUEs

Dequeue

Circular Queue

09/10/08 14

Drawback of Linear Queue
• Once the queue is full, even though few elements from the front are deleted and

 some occupied space is relieved, it is not possible to add anymore new elements,

 as the rear has already reached the Queue’s rear most position.

Circular Queue
• This queue is not linear but circular.:

Circular Queue having
Rear = 5 and Front = 0

• In circular queue, once the Queue is full the

 "First" index of the Queue becomes the

 "Rear" most index, if and only if the "Front"

element has moved forward. otherwise it will be

a "Queue overflow" state.

09/10/08 15

Algorithms for Insert Operations in Circular Queue
For Insert Operation

Insert-Circular-Q(CQueue, Rear, Front, N, Item)

Here, CQueue is a circular queue.

Rear represents the location in which the data element is to be inserted and

Front represents the location from which the data element is to be removed.

N is the maximum size of CQueue and

Item is the new item to be added.

Initailly Rear = -1 and Front = -1.

1. If Front = -1 and Rear = -1 then Set Front = Rear = 0 and go to step 5.

2. Else If Front =0 and Rear = N-1 or Front = Rear + 1

 then Print: “Circular Queue Overflow” and Return.

3. Else If Rear = N -1 then Set Rear := 0 and go to step 5.

4. Else Rear = Rear + 1

5. CQueue [Rear] := Item

6. Return

09/10/08 16

For Delete Operation
Delete-Circular-Q(CQueue, Front, Rear, Item)

CQueue is the place where data are stored.

Rear represents the location in which the data element is to be inserted and

Front represents the location from which the data element is to be removed.

Front element is assigned to Item.

Initially, Front = -1.
 *..Delete without Insertion

1. If Front = -1 then Print: “Circular Queue Underflow” and Return.

2. Set Item := CQueue [Front]

3. If Front = N – 1 then Set Front = 0 and Return.

4. If Front = Rear then Set Front = Rear = -1 and Return.

5. Set Front := Front + 1

6. Return.

09/10/08 17

Example- ENQUEUE
Circular queue with N = 5.

Rear

1. Initially, Rear = -1, Front =-1

2. Insert 10, Rear = 0, Front = 0.

3. Insert 50, Rear = 1, Front = 0.

4. Insert 20, Rear = 2, Front = 0.

5. Insert 70, Rear = 3, Front = 0.

6. Delete front, Rear = 3, Front =1.
Rear

Rear

Rear

Rear

Front

Front

Front

Front

Front

Initailly Rear = -1 and Front = -1.

1. If Front = -1 and Rear = -1 then Set Front :=0 and go to step 4.

2. If Front =0 and Rear = N-1 or Front = Rear + 1

 then Print: “Circular Queue Overflow” and Return.

3. If Rear = N -1 then Set Rear := 0 and go to step 4.

4. Set Rear:=Rear + 1 and CQueue [Rear] := Item.

 5. Return

(If Index starts with 0)

09/10/08 18

Example- ENQUEUE
Circular queue with N = 5.

Rear

1. Initially, Rear = 0, Front = 0.

2. Insert 10, Rear = 1, Front = 1.

3. Insert 50, Rear = 2, Front = 1.

4. Insert 20, Rear = 3, Front = 1.

5. Insert 70, Rear = 4, Front = 1.

6. Delete , Rear = 4, Front = 2.
Rear

Rear

Rear

Rear

Front

Front

Front

Front

Front

(Assume Index starts with 1)

09/10/08 19

7. Insert 100, Rear = 5, Front = 2.

8. Insert 40, Rear = 1, Front = 2.

9. Insert 140, Rear = 1, Front = 2.
 As Front = Rear + 1, so Queue overflow.

10. Delete, Rear = 1, Front = 3.
Front

Rear

FrontRear

Rear

Rear

Front

Front

11. Delete, Rear = 1, Front = 4.

12. Delete, Rear = 1, Front = 5.

Rear

Rear

Front

Front

ENQUEUE/DEQUEUE
Circular queue with N = 5.

09/10/08 20

7. Insert 100.

8. Insert 40.

 9. Insert 140.

10. Delete front,

11. Delete front.

12. Delete front.

Initially, Front = -1.

1. If Front = -1 then Print: “Circular Queue Underflow” and Return.

2. Set Item := CQueue [Front]

3. If Front = N – 1 then Set Front = 0 and Return.

4. If Front = Rear then Set Front = Rear = -1 and Return.

5. Set Front := Front + 1

6. Return.

Initailly Rear = -1 and Front = -1.

1. If Front = -1 and Rear = -1 then Set Front :=0 and go to

step 4.

2. If Front =0 and Rear = N-1 or Front = Rear + 1

 then Print: “Circular Queue Overflow” and Return.

3. If Rear = N -1 then Set Rear := 0 and go to step 4.

4. Set Rear:=Rear + 1 and CQueue [Rear] := Item.

 5. Return

1. Initially empty Queue

2. Insert 10,

3. Insert 50,

4. Insert 20,

5. Insert 70,

6. Delete front,.

Example- ENQUEUE / DEQUEUE
Circular queue with N = 5.

(Index starts with 0)

09/10/08 21

Example- ENQUEUE / DEQUEUE
Circular queue with N = 5.

Rear

(Index starts with 0)

1. Initially, Rear = -1, Front =-1

2. Insert 10, Rear = 0, Front = 0.

3. Insert 50, Rear = 1, Front = 0.

4. Insert 20, Rear = 2, Front = 0.

5. Insert 70, Rear = 3, Front = 0.

6. Delete front, Rear = 3, Front =1.

7. Insert 100, Rear = 4, Front = 1.

8. Insert 40, Rear = 0, Front = 1.

9. Insert 140, Rear = 0, Front = 1.
 As Front = Rear + 1, so Queue overflow.

10. Delete front, Rear = 0, Front = 2.

11. Delete front, Rear = 0, Front = 3.

12. Delete front, Rear = 0, Front = 4.

Double Ended Queue
Double ended queues, called deques for short, are a generalized form
of the queue. It is exactly like a queue except that elements can be
added to or removed from the head or the tail.
However, no element can be added and deleted from the middle.

In the computer’s memory, a deque is implemented using either a
circular array or a circular doubly linked list.

In a deque, two pointers are maintained, LEFT and RIGHT, which
point to either end of the deque. The elements in a deque extend from
the LEFT end to the RIGHT end and since it is circular, Dequeue[N–1]
is followed by Dequeue[0].

There are two variants of a double-ended queue. They
include :
• Input restricted deque In this, insertions can be done

only at one of the ends, while deletions can be done from
both ends.

• Output restricted deque In this deletions can be done only
at one of the ends, while insertions can be done on both
ends.

Priority Queues
A priority queue is a data structure in which each element is assigned
a priority. The priority of the element will be used to determine the
order in which the elements will be processed.

The general rules of processing the elements of a priority queue are
• An element with higher priority is processed before an element

with a lower priority.
• Two elements with the same priority are processed on a

first-come-first-served (FCFS) basis.

