
Appendix A: Introduction
to Java

1

Cmp Sci 187:
Introduction to Java

Based on Appendix A of text
(Koffmann and Wolfgang)

Appendix A: Introduction
to Java

2

Topics of the Review

• Essentials of object-oriented programming, in Java
• Java primitive data types, control structures, and arrays
• Using some predefined classes:

• Math
• JOptionPane, I/O streams
• String, StringBuffer, StringBuilder
• StringTokenizer

• Writing and documenting your own Java classes

Appendix A: Introduction
to Java

3

Some Salient Characteristics of Java

• Java is platform independent: the same program can
run on any correctly implemented Java system

• Java is object-oriented:
• Structured in terms of classes, which group data with

operations on that data
• Can construct new classes by extending existing ones

• Java designed as
• A core language plus
• A rich collection of commonly available packages

• Java can be embedded in Web pages

Appendix A: Introduction
to Java

4

Java Processing and Execution

• Begin with Java source code in text files: Model.java
• A Java source code compiler produces Java byte code

• Outputs one file per class: Model.class
• May be standalone or part of an IDE

• A Java Virtual Machine loads and executes class files
• May compile them to native code (e.g., x86) internally

Appendix A: Introduction
to Java

5

Compiling and Executing a Java Program

Appendix A: Introduction
to Java

6

Classes and Objects

• The class is the unit of programming
• A Java program is a collection of classes

• Each class definition (usually) in its own .java file
• The file name must match the class name

• A class describes objects (instances)
• Describes their common characteristics: is a blueprint
• Thus all the instances have these same characteristics

• These characteristics are:
• Data fields for each object
• Methods (operations) that do work on the objects

Appendix A: Introduction
to Java

7

Grouping Classes: The Java API

• API = Application Programming Interface
• Java = small core + extensive collection of packages
• A package consists of some related Java classes:

• Swing: a GUI (graphical user interface) package
• AWT: Application Window Toolkit (more GUI)
• util: utility data structures (important to CS 187!)

• The import statement tells the compiler to make
available classes and methods of another package

• A main method indicates where to begin executing a
class (if it is designed to be run as a program)

Appendix A: Introduction
to Java

8

A Little Example of import and main

import javax.swing.*;
 // all classes from javax.swing
public class HelloWorld { // starts a class
 public static void main (String[] args) {
 // starts a main method
 // in: array of String; out: none (void)
 }
}
• public = can be seen from any package
• static = not “part of” an object

Appendix A: Introduction
to Java

9

Processing and Running HelloWorld

• javac HelloWorld.java
• Produces HelloWorld.class (byte code)

• java HelloWorld
• Starts the JVM and runs the main method

Appendix A: Introduction
to Java

10

References and Primitive Data Types

• Java distinguishes two kinds of entities
• Primitive types
• Objects

• Primitive-type data is stored in primitive-type variables
• Reference variables store the address of an object

• No notion of “object (physically) in the stack”
• No notion of “object (physically) within an object”

Appendix A: Introduction
to Java

11

Primitive Data Types

• Represent numbers, characters, boolean values
• Integers: byte, short, int, and long
• Real numbers: float and double
• Characters: char

Appendix A: Introduction
to Java

12

Primitive Data Types

True or falseboolean

Unicode characters (generally 16 bits per char)char

+/-10-308 to +/-10+308 and 0, about 15 digits precisiondouble

+/-10-38 to +/-10+38 and 0, about 6 digits precisionfloat

-9,223,372,036,854,775,808 (64 bits)long

-2,147,483,648 .. 2,147,483,647 (32 bits)int

-32,768 .. 32,767 (16 bits)short

-128 .. 127 (8 bits)byte

Range of valuesData type

Appendix A: Introduction
to Java

13

Primitive Data Types (continued)

Appendix A: Introduction
to Java

14

Operators

1. subscript [], call (), member access .
2. pre/post-increment ++ --, boolean complement !,

bitwise complement ~, unary + -, type cast (type),
object creation new

3. * / %
4. binary + - (+ also concatenates strings)
5. signed shift << >>, unsigned shift >>>
6. comparison < <= > >=, class test instanceof
7. equality comparison == !=
8. bitwise and &
9. bitwise or |

Appendix A: Introduction
to Java

15

Operators

11. logical (sequential) and &&
12. logical (sequential) or ||
13. conditional cond ? true-expr : false-expr
14. assignment =, compound assignment += -= *= /=

<<= >>= >>>= &= |=

Appendix A: Introduction
to Java

16

Type Compatibility and Conversion

• Widening conversion:
• In operations on mixed-type operands, the numeric

type of the smaller range is converted to the numeric
type of the larger range

• In an assignment, a numeric type of smaller range
can be assigned to a numeric type of larger range

• byte to short to int to long
• int kind to float to double

Appendix A: Introduction
to Java

17

Declaring and Setting Variables

• int square;
square = n * n;

• double cube = n * (double)square;
• Can generally declare local variables where they are

initialized
• All variables get a safe initial value anyway (zero/null)

Appendix A: Introduction
to Java

18

Referencing and Creating Objects

• You can declare reference variables
• They reference objects of specified types

• Two reference variables can reference the same object
• The new operator creates an instance of a class
• A constructor executes when a new object is created
• Example: String greeting = ″hello″;

Appendix A: Introduction
to Java

19

Java Control Statements

• A group of statements executed in order is written
• { stmt1; stmt2; ...; stmtN; }

• The statements execute in the order 1, 2, ..., N
• Control statements alter this sequential flow of execution

Appendix A: Introduction
to Java

20

Java Control Statements (continued)

Appendix A: Introduction
to Java

21

Java Control Statements (continued)

Appendix A: Introduction
to Java

22

Methods

• A Java method defines a group of statements as
performing a particular operation

• static indicates a static or class method
• A method that is not static is an instance method
• All method arguments are call-by-value

• Primitive type: value is passed to the method
• Method may modify local copy but will not affect

caller’s value
• Object reference: address of object is passed
• Change to reference variable does not affect caller
• But operations can affect the object, visible to caller

Appendix A: Introduction
to Java

23

The Class Math

Appendix A: Introduction
to Java

24

Escape Sequences

• An escape sequence is a sequence of two characters
beginning with the character \

• A way to represents special characters/symbols

Appendix A: Introduction
to Java

25

The String Class

• The String class defines a data type that is used to
store a sequence of characters

• You cannot modify a String object
• If you attempt to do so, Java will create a new object

that contains the modified character sequence

Appendix A: Introduction
to Java

26

Comparing Objects

• You can’t use the relational or equality operators to
compare the values stored in strings (or other objects)

(You will compare the pointers, not the objects!)

Appendix A: Introduction
to Java

27

The StringBuffer Class

• Stores character sequences
• Unlike a String object, you can change the contents of

a StringBuffer object

Appendix A: Introduction
to Java

28

StringTokenizer Class

• We often need to process individual pieces, or tokens, of
a String

Appendix A: Introduction
to Java

29

Wrapper Classes for Primitive Types

• Sometimes we need to process primitive-type data as
objects

• Java provides a set of classes called wrapper classes
whose objects contain primitive-type values: Float,
Double, Integer, Boolean, Character, etc.

Appendix A: Introduction
to Java

30

Defining Your Own Classes

• Unified Modeling Language (UML) is a standard diagram
notation for describing a class

Class
name

Field
valuesClass

name

Field
signatures:

type and name

Method signatures:
name, argument
types, result type

Appendix A: Introduction
to Java

31

Defining Your Own Classes (continued)

• The modifier private limits access to just this class
• Only class members with public visibility can be

accessed outside of the class* (* but see protected)
• Constructors initialize the data fields of an instance

Appendix A: Introduction
to Java

32

The Person Class

// we have omitted javadoc to save space
public class Person {
private String givenName;
private String familyName;
private String IDNumber;
private int birthYear;

private static final int VOTE_AGE = 18;
 private static final int SENIOR_AGE = 65;
...

Appendix A: Introduction
to Java

33

The Person Class (2)

// constructors: fill in new objects
public Person(String first, String family,

 String ID, int birth) {
this.givenName = first;
this.familyName = family;
this.IDNumber = ID;
this.birthYear = birth;

}
public Person (String ID) {
this.IDNumber = ID;

}

Appendix A: Introduction
to Java

34

The Person Class (3)

// modifier and accessor for givenName
public void setGivenName (String given) {
this.givenName = given;

}

public String getGivenName () {
return this.givenName;

}

Appendix A: Introduction
to Java

35

The Person Class (4)

// more interesting methods ...
public int age (int inYear) {
return inYear – birthYear;

}
public boolean canVote (int inYear) {
int theAge = age(inYear);
return theAge >= VOTE_AGE;

}

Appendix A: Introduction
to Java

36

The Person Class (5)

// “printing” a Person
public String toString () {
return “Given name: “ + givenName + “\n”
+ “Family name: “ + familyName + “\n”
+ “ID number: “ + IDNumber + “\n”
+ “Year of birth: “ + birthYear + “\n”;

}

Appendix A: Introduction
to Java

37

The Person Class (6)

// same Person?
public boolean equals (Person per) {
return (per == null) ? false :
this.IDNumber.equals(per.IDNumber);

}

Appendix A: Introduction
to Java

38

Arrays

• In Java, an array is also an object
• The elements are indexes and are referenced using the

form arrayvar[subscript]

Appendix A: Introduction
to Java

39

Array Example

float grades[] = new float[numStudents];
... grades[student] = something; ...

float total = 0.0;
for (int i = 0; i < grades.length; ++i) {
 total += grades[i];
}
System.out.printf(“Average = %6.2f%n”,
 total / numStudents);

Appendix A: Introduction
to Java

40

Array Example Variations

// possibly more efficient
for (int i = grades.length; --i >= 0;) {
 total += grades[i];
}

// uses Java 5.0 “for each” looping
for (float grade : grades) {
 total += grade;
}

Appendix A: Introduction
to Java

41

Input/Output using Class JOptionPane

• Java 1.2 and higher provide class JOptionPane, which
facilitates display
• Dialog windows for input
• Message windows for output

Appendix A: Introduction
to Java

42

Input/Output using Class JOptionPane
(continued)

Appendix A: Introduction
to Java

43

Converting Numeric Strings to Numbers

• A dialog window always returns a reference to a String
• Therefore, a conversion is required, using static

methods of class String:

Appendix A: Introduction
to Java

44

Input/Output using Streams

• An InputStream is a sequence of characters
representing program input data

• An OutputStream is a sequence of characters
representing program output

• The console keyboard stream is System.in
• The console window is associated with System.out

Appendix A: Introduction
to Java

45

Opening and Using Files: Reading Input

import java.io.*;
public static void main (String[] args) {
 // open an input stream (**exceptions!)
 BufferedReader rdr =
 new BufferedReader(
 new FileReader(args[0]));
 // read a line of input
 String line = rdr.readLine();
 // see if at end of file
 if (line == null) { ... }

Appendix A: Introduction
to Java

46

Opening and Using Files: Reading Input (2)

 // using input with StringTokenizer
 StringTokenizer sTok =
 new StringTokenizer (line);
 while (sTok.hasMoreElements()) {
 String token = sTok.nextToken();
 ...;
 }
 // when done, always close a stream/reader
 rdr.close();

Appendix A: Introduction
to Java

47

Alternate Ways to Split a String

• Use the split method of String:
String[] = s.split(“\\s”);
// see class Pattern in java.util.regex

• Use a StreamTokenizer (in java.io)

Appendix A: Introduction
to Java

48

Opening and Using Files: Writing Output

// open a print stream (**exceptions!)
PrintStream ps = new PrintStream(args[0]);
// ways to write output
ps.print(“Hello”); // a string
ps.print(i+3); // an integer
ps.println(“ and goodbye.”); // with NL
ps.printf(“%2d %12d%n”, i, 1<<i); // like C
ps.format(“%2d %12d%n”, i, 1<<i); // same
// closing output streams is very important!
ps.close();

Appendix A: Introduction
to Java

49

Summary of the Review

• A Java program is a collection of classes
• The JVM approach enables a Java program written on

one machine to execute on any other machine that has a
JVM

• Java defines a set of primitive data types that are used to
represent numbers, characters, and boolean data

• The control structures of Java are similar to those found
in other languages

• The Java String and StringBuffer classes are used
to reference objects that store character strings

Appendix A: Introduction
to Java

50

Chapter Review (continued)

• Be sure to use methods such as equals and
compareTo to compare the contents of String objects

• You can declare your own Java classes and create
objects of these classes using the new operator

• A class has data fields and instance methods
• Array variables can reference array objects
• Class JOptionPane can be used to display dialog

windows for data entry and message windows for output
• The stream classes in package java.io read strings

from the console and display strings to the console, and
also support file I/O

