

- 1 Понятие производной
- 2 Геометрический смысл производной
- 3 Понятие дифференциала
- Геометрический смысл и свойства дифференциала

Пусть функция y = f(x) определена в некоторой окрестности точки x_0 . Предел отношения приращения Δy функции в этой точке (если он существует) к приращению Δx аргумента, когда $\Delta x \to 0$, называется производной функции f(x)в точке x_0 .

Обозначения: или или или

Таким образом,

Вычисление производной называется дифференцированием функции.

Таблица производных

1.
$$(c)' = 0, c = const$$

2.
$$(x^{\alpha})' = \alpha \cdot x^{\alpha-1}$$
 (где $\alpha \in \Re$); в частости, $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$;

3.
$$(a^x)' = a^x \cdot \ln a, a > 0$$
, в частности, $(e^x)' = e^x$;

4.
$$(\log_a x)' = \frac{1}{x \ln a}, a > 0, a \neq 1$$
; в частности, $(\ln x)' = \frac{1}{x}$;

$$5. \quad (\sin x)' = \cos x;$$

6.
$$(\cos x)' = -\sin x;$$

$$7. (tgx)' = \frac{1}{\cos^2 x};$$

$$8. \qquad (ctgx)' = -\frac{1}{\sin^2 x};$$

9.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

9.
$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}};$$

10. $(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}};$
11. $(\arctan x)' = \frac{1}{1 + x^2};$

11.
$$(arctgx)' = \frac{1}{1 + x^2}$$

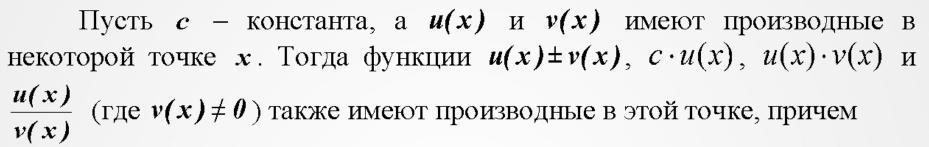
12.
$$(arcctgx)' = -\frac{1}{1+x^2};$$

13.
$$(shx)' = chx$$
;

14.
$$(chx)' = shx$$
;

$$15. \quad (thx)' = \frac{1}{ch^2x};$$

$$16. \quad (cthx)' = -\frac{1}{sh^2x};$$



1.
$$(u \pm v)' = u' \pm v';$$

2.
$$(u \cdot v)' = u'v + uv'$$
, в частности, $(cu)' = c \cdot u'$;

3.
$$\left(\frac{u}{v}\right)' = \frac{u'v \quad uv'}{v^2}$$
, в частности, $\left(\frac{c}{v}\right) = \frac{cv'}{v^2}$.

Пусть теперь функция $u = \varphi(x)$ имеет производную в точке x_{θ} , функция y = f(u) — в точке $u_{\theta} = \varphi(x_{\theta})$. Тогда сложная функция $y = f(\varphi(x))$ также имеет производную в точке x_{θ} , причем

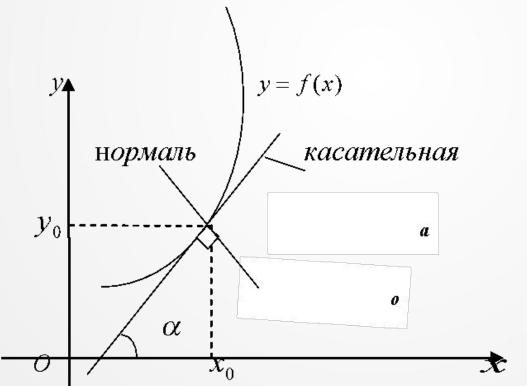
$$y'(x_0) = y'(u_0) \cdot u'(x_0).$$

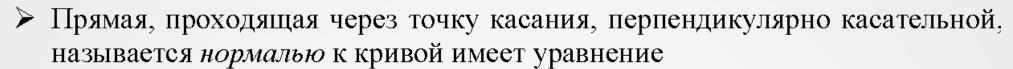
Геометрический смысл производной

Пусть функция y = f(x)имеет производную в точке x_0 . Тогда существует касательная к графику этой функции в точке $M_0(x_0; y_0)$, уравнение имеет вид

$$y - y_0 = f'(x_0)(x - x_0).$$

При этом $f'(x_0) = tg\alpha$, где α — угол наклона этой касательной к оси Ox (рис.80).





$$y - y_0 = -\frac{1}{f'(x_0)} \cdot (x - x_0).$$

Если $f(x_{\theta}) = \theta$ (т.е. касательная горизонтальна), то нормаль вертикальна имеет уравнение $x = x_0$.

Пусть даны две пересекающиеся в точке $M_0\left(x_0,y_0\right)$ кривые $y=f_1(x)$ и $y=f_2(x)$, причем обе функции имеют производные в точке x_θ . Тогда углом между этими кривыми называется угол между касательными к ним, проведенными в точке M_θ .

Этот угол ϕ можно найти из формулы

$$tg\varphi = \frac{f'_{2}(x_{0}) - f'_{1}(x_{0})}{1 + f'_{1}(x_{0}) \cdot f'_{2}(x_{0})}$$

Логарифмическая производная

При нахождении производных от показательно-степенной функции $u(x)^{v(x)}$, а также других громоздких выражений, допускающих логарифмирование (произведение, частное и извлечение корня), удобно применять логарифмическую производную.

ightharpoonup Логарифмической производной от функции y = f(x) называется производная от логарифма этой функции:

$$\left(\ln y\right)' = \frac{y'}{y}.$$

Используя логарифмическую производную, нетрудно вывести формулу для производной показательно-степенной функции $u(x)^{v(x)}$:

$$(u^{\nu})' = u^{\nu} \cdot v' \cdot \ln u + u^{\nu-1} \cdot u' \cdot v$$

Производная неявной функции

Пусть функция y = y(x), обладающая производной в точке x, задана неявно уравнением

$$F(x,y) = 0. {(1.1)}$$

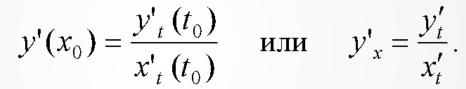
Тогда производную y'(x) этой функции можно найти, продифференцировав уравнение (1.1) (при этом y считается функцией от x) и разрешая затем полученное уравнение относительно y'.

Производная f'(x) от функции f(x) называется также производной первого порядка. В свою очередь производная от функции f'(x) называется производной второго порядка от функции f(x) (или второй производной) и обозначается f''(x).

Аналогично определяются производная третьего порядка (или третья производная), обозначаемая f'''(x) и т.д.

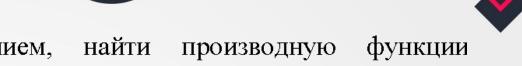
Производная n-го порядка обозначается $f^{(n)}(x)$.

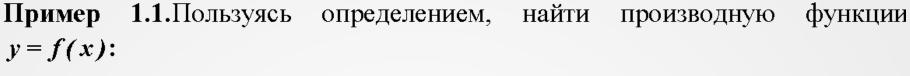
Пусть функция y = f(x) определена параметрическими функциями x = x(t) и y = y(t). Тогда если функции x(t) и y(t) имеют производные в точке t_{θ} , причем $x'(t_0) \neq 0$, а функция y = f(x) имеет производную в точке $x_0 = x(t_0)$, то эта производная находится по формуле



Вторая производная y''(x) находится по формуле

$$y''_{xx} = \frac{y''_{t} \cdot x_{t}' - x''_{t} \cdot y'_{t}}{(x'_{t})^{3}}$$





Пример 1.1 (1)
$$y = 3x^2$$
;

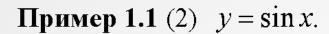
Решение. Придадим аргументу x приращение Δx . Тогда соответствующее приращение Δy функции будет иметь вид

$$\Delta y = f(x + \Delta x) - f(x) = 3(x + \Delta x)^2 - 3x^2 = 3(x^2 + 2x\Delta x + (\Delta x)^2 - x^2) = 3\Delta x(2x + \Delta x)$$

Отсюда находим предел соотношения $\frac{\Delta y}{\Delta x}$ в точке x при $\Delta x \rightarrow \theta$:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{3\Delta x (2x + \Delta x)}{\Delta x} = 3\lim_{\Delta x \to 0} (2x + \Delta x) = 3 \cdot 2x = 6x.$$

Таким образом, $y' = (3x^2)' = 6x$.



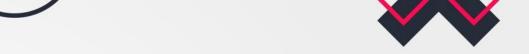
Решение. Найдем приращение Δy функции, соответствующее приращению Δx аргумента, используя формулу разности синусов:

$$\Delta y = \sin(x + \Delta x) - \sin x = 2\sin\frac{\Delta x}{2} \cdot \cos(x + \frac{\Delta x}{2})$$

Отсюда

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta \Delta x \to 0} \frac{2 \sin \frac{\Delta x}{2} \cdot \cos \left(x + \frac{\Delta x}{2}\right)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sin \frac{\Delta x}{2}}{\left(\frac{\Delta x}{2}\right)} \cdot \lim_{\Delta x \to 0} \cos \left(x + \frac{\Delta x}{2}\right) = \cos x.$$

В последнем равенстве мы воспользовались первым замечательным пределом и непрерывностью $\cos x$. Таким образом, $y' = (\sin x)' = \cos x$.



Пример 1.2. Пользуясь основными правилами дифференцировани найти f'(x), если:

Пример 1.2 (1)
$$f(x) = \frac{9}{\sqrt[3]{x^2}} - 5^{x+1}$$
;

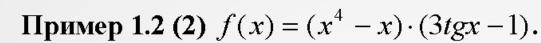
Решение. Преобразуем функцию к виду

$$f'(x) = 9 \cdot x^{-2/3} - 5 \cdot 5^x.$$

Отсюда, используя таблицу производных, получим

$$f'(x) = (9 \cdot x^{2/3} - 5 \cdot 5^x)' = (9 \cdot x^{-2/3})' - (5 \cdot 5^x)' =$$

$$= 9 \cdot (x^{-2/3})' - 5 \cdot (5^x)' = 9 \cdot (-\frac{2}{3}) \cdot x^{-\frac{2}{3} - 1} - 5 \cdot 5^x \ln 5 = -6x^{-5/3} - 5^{x+1} \ln 5$$



Решение. Воспользуемся формулой для производной произведения:

$$f'(x) = [(x^4 - x)(3tgx - 1)]' = (x^4 - x)'(3tgx - 1) + (x^4 - x)(3tgx - 1)' =$$

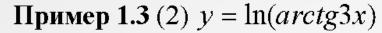
$$= (4x^3 - 1)(3tgx - 1) + (x^4 - x) \cdot \frac{3}{\cos^2 x}$$

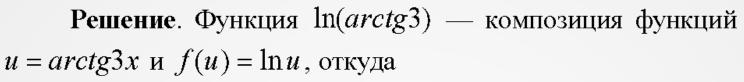
Пример 1.3. Применяя правило дифференцирования сложной функции, найти производную функции

Пример 1.3 (1) $y = \sin^2 x$.

Решение. Данная функция является композицией двух имеющих производные функций $u = \sin x$ и $f(u) = u^2$. Так как $u' = \cos x$, а f'(u) = 2u, то с учетом правила дифференцирования сложной функции получим:

$$y'(x) = (u^2)'_x = 2u \cdot u' = 2\sin x \cdot \cos x = \sin 2x$$
.





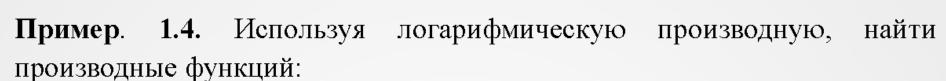
$$y'(x) = (\ln u)'_x = \frac{1}{u} \cdot u' = \frac{1}{arctg3x} \cdot (arctg3x)'.$$

Функция arctg3x, в свою очередь, является композицией двух функций v=3x и g(v)=arctgv, поэтому для нахождения ее производной нам придется еще раз применить правило дифференцирования сложной функции:

$$(arctg3x)' = (arctgv)'_x = \frac{1}{1+v^2} \cdot v' = \frac{1}{1+(3x)^2} \cdot 3 = \frac{3}{1+9x^2}.$$

Отсюда
$$y' = \frac{1}{arctg3x} \cdot (arctg3x)' = \frac{3}{(1+9x^2)arctg3x}.$$

окончательно



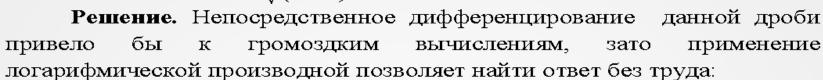
Пример. 1.4 (1) $y = x^{\sin x}$

Решение: Прологарифмируем обе части равенства $y = x^{\sin x}$. Тогда $\ln y = \ln x^{\sin x}$, т.е. $\ln y = \sin x \cdot \ln x$. Теперь продифференцируем последнее равенство, при этом в левой части используем производную сложной функции, а в правой — производную произведения: $(\ln y)' = (\sin x \cdot \ln x)'$, т.е. $\frac{y'}{y} = (\sin x)' \ln x + \sin x (\ln x)'$ или

$$\frac{y'}{y} = \cos x \cdot \ln x + \frac{\sin x}{x}.$$

Отеюда $y' = y(\cos x \cdot \ln x + \frac{\sin x}{x}$ или, учитывая, что $y = x^{\sin x}$, $y' = x^{\sin x}(\cos x \cdot \ln x + \frac{\sin x}{x})$.

Пример. 1.4 (2)
$$y = \frac{(x-1)^3 \cdot \sqrt{x+2}}{\sqrt[3]{(x+1)^2}}$$



$$\ln y = \ln \frac{(x-1)^3 (x+2)^{\frac{1}{2}}}{(x+1)^{\frac{2}{3}}}$$

Отсюда, используя формулы для логарифма произведения, частного и степени, получим:

$$\ln y = \ln(x-1)^3 + \ln(x+2)^{\frac{1}{2}} - \ln(x+1)^{\frac{2}{3}}$$

т.е.

$$\ln y = 3\ln(x-1) + \frac{1}{2}\ln(x+2) - \frac{2}{3}\ln(x+1)$$

Осталось продифференцировать обе части полученного равенства:

$$(\ln y)' = [3\ln(x-1) + \frac{1}{2}\ln(x+2) - \frac{2}{3}\ln(x+1)]'$$

Или

$$\frac{y'}{y} = \frac{3}{x-1} + \frac{1}{2(x+2)} - \frac{2}{3(x+1)},$$

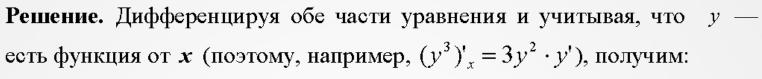
Откуда

$$y' = y \cdot \left(\frac{3}{x-1} + \frac{1}{2(x+2)} - \frac{2}{3(x+1)} \right),$$

T.e.

$$y' = \frac{(x-1)^3 \sqrt{x+2}}{\sqrt[3]{(x+1)^2}} \left(\frac{3}{x-1} + \frac{1}{2(x+2)} - \frac{2}{3(x+1)} \right).$$

$$x^3 + y^3 = \sin(x - 2y)$$



$$3x^2 + 3y^2 \cdot y' = \cos(x - 2y)(1 - 2y')$$

или

$$3x^2 + 3y^2 \cdot y' = \cos(x - 2y) - 2y' \cdot \cos(x - 2y)$$

Отсюда находим y':

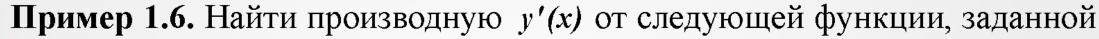
$$3y^2y'+2y'\cdot\cos(x-2y) = \cos(x-2y)-3x^2$$

Или

$$y'(3y^2 + 2\cos(x-2y)) = \cos(x-2y) - 3x^2$$

T.e.

$$y' = \frac{\cos(x-2y) - 3x^2}{3y^2 + 2\cos(x-2y)}.$$

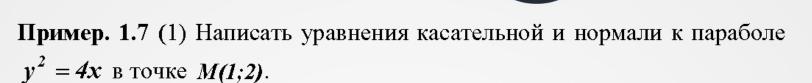


параметрически:
$$\begin{cases} x = 2\cos t, \\ y = 3\sin t. \end{cases}$$

Решение. Производная функции y(x) находится по формуле $y'(x) = \frac{y''(t)}{x'(t)}$,

откуда в нашем случае

$$y'(x) = \frac{(3\sin t)'_t}{(2\cos t)'_t} = -\frac{3\cos t}{2\sin t} = -1,5ctgt.$$



Решение. Найдем y'(x) как производную неявной функции:

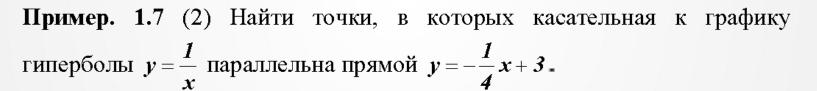
$$(y^2)' = (4x)'$$
, т. е. $2yy' = 4$, откуда $y' = \frac{2}{y}$. Значит, $y'(x_\theta) = y'(1) = 1$.

Отсюда получаем уравнение касательной в точке М:

$$y-2=x-1$$
, T.e. $y=x+1$.

Теперь найдем уравнение нормали:

$$y-2=-(x-1)$$
, r.e. $y=-x+3$



Решение. Угловой коэффициент данной прямой равен $-\frac{1}{4}$, поэтому производная к кривой в искомой точке x_0 также равна $-\frac{1}{4}$:

$$y'(x_{\theta}) = -\frac{1}{4}$$
, т.е. $-\frac{1}{x^2} = -\frac{1}{4}$, откуда $x^2 = 4$, или $x = \pm 2$.

Пример. 1.7 (3) Найти угол, под которым пересекаются кривые: $y = \frac{8}{x}$ и

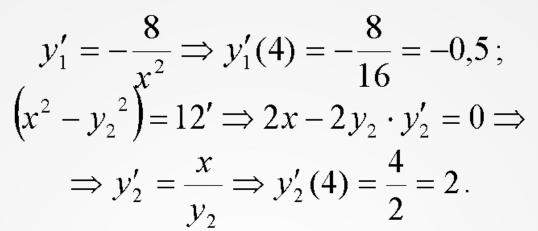
$$x^2 - y^2 = 12.$$

Решение. Сначала найдем точку пересечения кривых, для чего подставим

$$y = \frac{8}{x}$$
 во второе уравнение: $x^2 - \left(\frac{8}{x}\right)^2 = 12$, или

 $t - \frac{64}{t} = 12$, где $t = x^2$. Решая последнее уравнение, найдем t = 16, откуда $x = \pm 4$, $y = \pm 2$. Таким образом, имеем 2 точки пересечения $M_1(4;2)$ и $M_2(-4;-2)$.

Найдем угол φ_1 пересечения кривых в точке M_1 , предварительно вычислив $y_1'(4)$ и $y_2'(4)$ из уравнений $y=\frac{8}{x}$ и $x^2-{y_2}^2=12$:



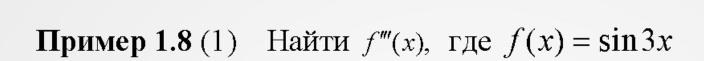
Теперь окончательно найдем

$$tg\phi_1 = tg\phi_1 = \frac{y_2'(4) - y_1'(4)}{1 + y_1'(4)y_2'(4)} = \frac{2 + \frac{1}{2}}{1 - 1} = \frac{2 + \frac{1}{2}}{1 - 1}.$$

Поскольку знаменатель дроби обратился в ноль, то это означает, что π

$$\varphi_1=\frac{\pi}{2}$$
.

Аналогично находим угол $\varphi_2 = \frac{\pi}{2}$ во второй точке пересечения данных кривых.



Решение. Находим первую производную:

$$f'(x) = (\sin 3x)' = 3\cos 3x$$
.

Отсюда получим вторую производную –

$$f''(x) = (3\cos 3x)' = -9\sin 3x,$$

А затем и искомую третью:

$$f'''(x) = (-9\sin 3x)' = -27\cos 3x$$

1.8 (2) Найти y''_{xx} для функции y = y(x), Пример заданной параметрически $x = t^2$, $y = t^3$

Решение. Воспользуемся формулой

$$y_{xx}'' = \frac{x_t' \cdot y_{tt}'' - y_t' \cdot x_{tt}''}{(x_t')^3},$$

откуда

$$y_{xx}'' = \frac{(t^2)' \cdot (t^3)'' - (t^3)'' \cdot (t^2)''}{[(t^2)']^3} = \frac{2t \cdot 6t - 3t^2 \cdot 2}{(2t)^3} = \frac{6t^2}{8t^3} = \frac{3}{4t}.$$

ДИФФЕРЕНЦИАЛ

Понятие дифференциала

ightharpoonup
ig

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x, \qquad (2.1)$$

где $\lim_{\Delta x \to 0} a(\Delta x) = 0$, то функция называется $\partial u \phi \phi$ еренцируемой в точке x_{θ} .

При этом главная, линейная относительно Δx , часть этого приращения, т. е. $A \cdot \Delta x$, называется $\partial u \phi \phi$ еренциалом ϕ ункции в точке x_0 и обозначается dy или $df(x_0)$.

Нетрудно показать (положив y = x в формуле (2.1)), что $dx = \Delta x$. Функция f(x) дифференцируема в точке x_o тогда и только тогда, когда в этой точке существует конечная производная $f'(x_\theta)$; при этом $A = f'(x_\theta)$. Поэтому $df(x_\theta) = f'(x_\theta) dx$, или, если f'(x) существует на данном интервале (a;b), то dy = f'(x) dx, $x \in (a,b)$.

Отсюда $f'(x) = \frac{dy}{dx}$, т. е. производная функции y = f(x) в точке x равна отношению дифференциала этой функции в данной точке к дифференциалу независимой переменной.

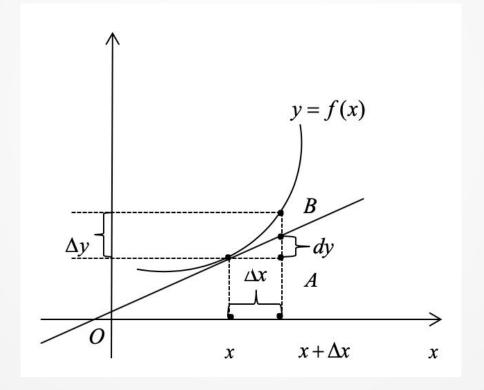
Если приращение Δx аргумента x близко к нулю (т. е. достаточно мало), то приращение Δy функции приближенно равно ее дифференциалу, т.е. $\Delta y \approx dy$, откуда

$$f(x_o + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$$

$$df(x_0)$$

Последняя формула удобна для приближенного вычисления значения функции f(x) в точке $x_0 + \Delta x$ по известному значению этой функции и ее производной в точке x_0 .

Геометрически приращение Δy функции f(x) в точке x — есть приращение ординаты точки на кривой ($\Delta y = AC$), а дифференциал dy функции в этой точке — приращение ординаты соответствующей точки на касательной (dy = AB).



Пусть u(x) и v(x) – некоторые функции, дифференцируемые в точке x. Тогда:

2.
$$d(\alpha u) = \alpha \cdot du$$
, где α – константа.

3.
$$d(u \pm v) - du \pm dv$$
.

4.
$$d(u \cdot v) = udv + vdu$$
.

$$5. d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}.$$

6. Инвариантность формы дифференциала. Если y = f(u(x)) -сложная функция, то

$$df(u) = f'(u)dv$$
, или $dy = y'_u \cdot du$,

т.е. форма дифференциала не меняется (инвариантна) независимо от того, рассматривается y как функция независимой переменной x или зависимой переменной u.

Пусть функция y = f(x) дифференцируема на интервале (a,b). Тогда, как известно, в каждой точке этого интервала определен дифференциал dy = f'(x)dx функции f(x), называемый также дифференциалом первого порядка (или первым дифференциалом).

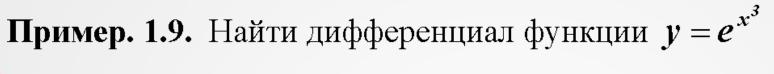
Дифференциал второго порядка обозначается d^2y или $d^2f(x)$. Таким образом, $d^2y = d(dy)$. Учитывая, что dy = f'(x)dx, где dx— не зависящая от x константа, получим

 $d^2y = f''(x)(dx)^2$, или, более кратко, $d^2y = f''(x)dx^2$

Аналогично определяются дифференциалы третьего и более высоких порядков: $d^3y = d(d^2y)$, $d^4y = d(d^3y)$, В общем случае, дифференциалом n-го порядка от функции f(x) в точке x называется дифференциал от дифференциала (n-1)-го порядка функции f(x) в этой точке: $d^ny = d(d^{n-1}y)$, т. е. $d^ny = f^{(n)}(x)(dx)^n$, или, более кратко, $d^ny = f^n(x)dx^n$. Отсюда следует, что

$$f^{(n)}(x) = \frac{d^n y}{dx^n}$$
, в частности $f''(x) = \frac{d^2 y}{dx^2}$

Заметим, что lkz дифференциалов высших порядков свойство инвариантности (как для дифференциалов первого порядка) не имеет места.



Решение. Так как dy = y'dx, то в данном случае $dy = (e^{x^3})'dx = 3x^2 \cdot e^{x^3}dx$.

Так как dy = y'dx, то в данном случае $dy = (e^{x^3})'dx = 3x^2 \cdot e^{x^3}dx$.

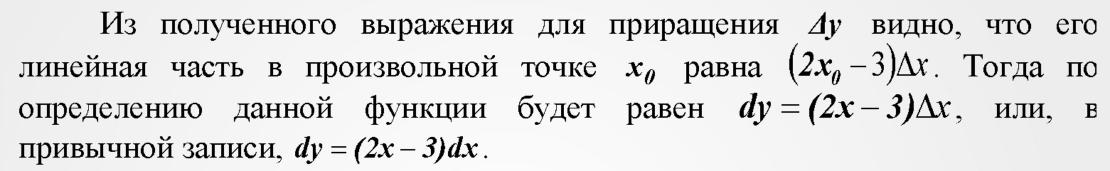
Пример. 1.10. Найти приращение и дифференциал функции $y = x^2 - 3x + 1$ в точке $x_0 = 2$, если $\Delta x = 0,1$.

Решение. Сначала найдем приращение *Ду* в общем виде:

$$\Delta y = y(x + \Delta x) - y(x) = [(x + \Delta x)^2 - 3(x + \Delta x) + 1] - (x^2 - 3x + 1)$$

$$= x^2 + 2x\Delta x + (\Delta x)^2 - 3x - 3\Delta x + 1 - x^2 + 3x - 1 =$$

$$= 2x\Delta x - 3\Delta x + (\Delta x)^2 = (2x - 3)\Delta x + (\Delta x)^2$$



Второе слагаемое в полученной записи для Δy , т.е. $(\Delta x)^2$, есть бесконечно малая более высокого порядка, чем первое слагаемое.

Заметим, что можно найти dy и сразу (без вычисления Δy) по формуле dy = y'dx, откуда $dy = (x^2 - 3x + 1)'dx = (2x - 3)dx$. Теперь найдем Δy и dy в точке $x_0 = 2$, если $\Delta x = 0,1$:

$$\Delta y = (2 \cdot 2 - 3) \cdot 0.1 + (0.1)^2 = 0.1 + 0.01 = 0.11, \ dy = 0.1.$$

Пример. 1.11 (1). Вычислить приближенно: *ln1,02*

Решение. Воспользуемся приближенной формулой

$$f(x_{\theta} + \Delta x) \approx f(x_{\theta}) + f'(x_{\theta}) \Delta x$$
.

Тогда, подставляя f(x) = lnx, получим

$$\ln(x_0 + \Delta x) \approx \ln x_0 + \frac{1}{x_0} \cdot \Delta x$$
.

Полагая здесь $x_0 = 1$, $\Delta x = 0.02$, найдем

$$\ln 1,02 \approx \ln 1 + \frac{1}{1} \cdot 0,02 = 0,02.$$

Таким образом, $ln1,02 \approx 0,02$.

Решение: Учитывая, что $f(x) = \sqrt{x}$, $x_{\theta} = 25$, $\Delta x = -1$, получим

$$\sqrt{x + \Delta x} \approx \sqrt{x_0} + \frac{1}{2\sqrt{x_0}} \cdot \Delta x$$
, T.e.

$$\sqrt{24} \approx \sqrt{25} + \frac{1}{2\sqrt{25}} \cdot (-1) = 4.9$$

Окончательно $\sqrt{24 \approx 4.9}$

Пример. 1.12. Найти dy, d^2y и d^3y для функции $y = \sqrt[3]{x}$.

Решение. Поскольку

$$dy = y'dx = (\sqrt[3]{x})'dx = \frac{1}{3}x^{-2/3}dx = \frac{dx}{3\cdot\sqrt[3]{x^2}},$$

To

$$d^{2}y = d(dy) = d\left(\frac{dx}{3\sqrt[3]{x^{2}}}\right) = \left(\frac{1}{3\sqrt[3]{x^{2}}}\right)'(dx)^{2} = \frac{1}{3}(x^{-2/3})'dx = -\frac{2}{9}x^{-5/3}dx^{2} = -\frac{2dx^{2}}{9x\sqrt[3]{x^{2}}}$$

Отсюда

$$d^{3}y = d(d^{2}y) = d\left(-\frac{2}{9}\frac{dx^{2}}{x^{5/3}}\right) = -\frac{2}{9}(x^{-5/3})'dx^{3} = \frac{10}{27}x^{-8/3}dx^{3} = \frac{10dx^{3}}{27^{2}\sqrt[3]{x^{2}}}.$$

То же самое можно было найти иначе, предварительно отыскав производные y', y'' и y''', а затем воспользоваться формулами:

$$d^2y = y''dx^2, d^3y = y'''dx^3.$$

