

Этот урок содержит общие принципы моделирования конструкций методом конечных элементов и обзор основных инструментов в Femap, доступных для создания FEA-моделей.

Темы урока:

- Что такое метод конечных элементов?
- Что включает в себя FEA-модель?
- Последовательность КЭ моделирования в Femap
- Объекты модели и команды Femap
- Обзор интерфейса Femap
- Единицы измерения
- Форматы файлов Femap
- Настройки Femap
- Лицензирование Femap

СА D I S Что такое метод конечных элементов?

Анализ конечных элементов (МКЭ) - это математическое моделирование поведения конструкции под действием внутренних или внешних сил, основанное на численных методах решения дифференциальных уравнений.

МКЭ можно использовать для моделирования следующих типов физического поведения:

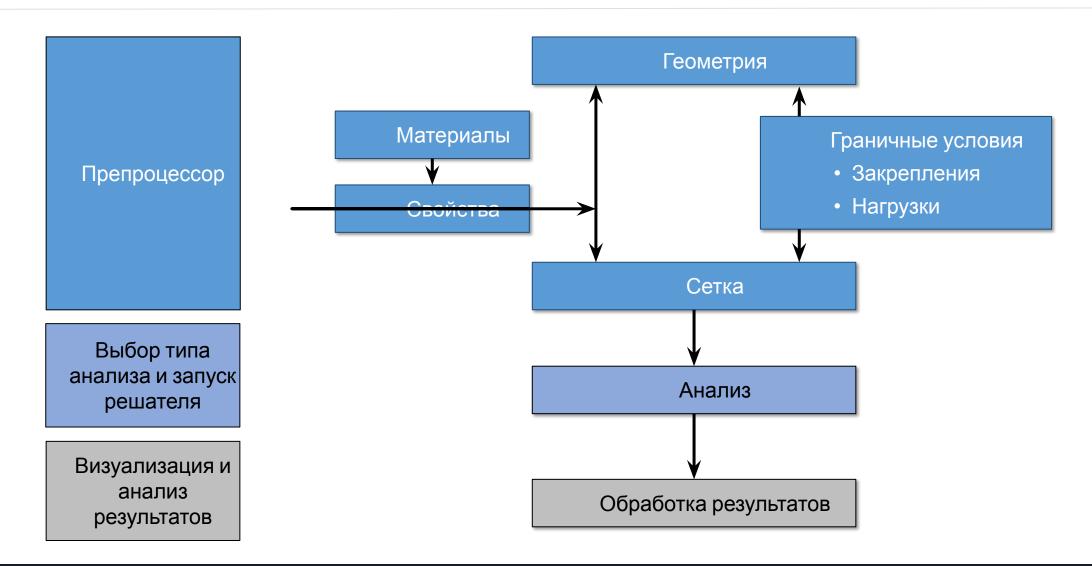
- механика деформируемого твердого тела
- теплообмен
- гидродинамика
- оптические явления
- электромагнетизм

Femap with NX Nastran можно использовать для моделирования первых двух типов задач. Femap Flow, Thermal и Advanced Thermal могут использоваться для моделирования задач теплообмена, гидродинамики и оптики.

С A D I S Что включает в себя FEA-модель?

Модель конечно-элементного анализа представляет собой набор следующих объектов:

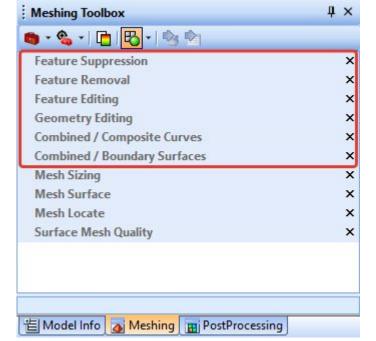
- Конечные элементы, которые определяются в зависимости от выбранной математической модели:
 - Балочные элементы Веат и Rod
 - Плоские элементы Plate, Laminate, Membrane треугольные или прямоугольные, с линейной или квадратичной функцией формы.
 - Объемные элементы Solid, Solid Laminate
 - Различные элементы, такие как пружины, точечные массы, RBE и контактные
- Модели материалов изотропные, 2D и 3D ортотропные, 2D и 3D анизотропные.
- Граничные условия (нагрузки и закрепления)


Любая FEA-модель будет настолько точно соответствовать действительности, насколько подробно вы ее аппроксимируете набором соответствующих объектов в Femap.

Точность результатов конечно-элементного анализа модели зависит от качества сетки, выбранной модели материала, граничных условий и типа анализа.

С A D I S Объекты Femap и рабочий процесс создания модели FEA

С А D I S Объекты модели Femap и команды – Геометрия


Импорт геометрии	Создание геометрии внутри Femap	Модификация геометрии
File > Import Geometry	Geometry > commands	Geometry > commands
File > References		Modify > commands

Импорт напрямую геометрии САПР

Solid Edge, NX (Unigraphics и I-deas), ProE, CATIA и SolidWorks.

Поддержка стандартов обмена данными 3D-моделей Parasolid, ACIS, IGES, STEP, STL

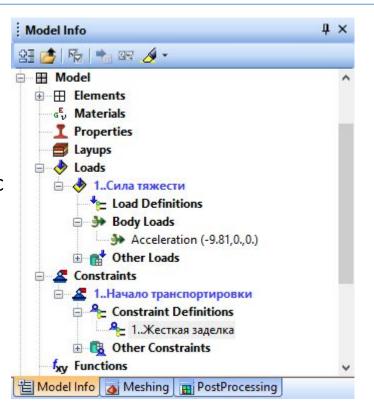
Создание и редактирование геометрии инструментами Femap Точки, кривые в плоскости и трехмерном пространстве Поверхности Объемы Серединные поверхности Мeshing Toolbox

С A D I S Объекты модели Femap и команды – Материалы и свойства КЭ

Материалы	Свойства КЭ		
Model > Material	Model > Properties	Element / Property Type	
 Типы материалов: изотропные 2D и 3D ортотропные 2D и 3D анизотропные Эластомеры Поддержка различных решателей (NX Nastran, MSC Nastran, LS-Dyna, Abaqus, Marc) 	Типы КЭ:Балочные элементыПлоские элементыОбъемные элементы«Остальные» элементы	Line Elements Rod Tube Curved Tube Bar Beam Link Curved Beam Spring/Damper DOF Spring Gap Plot Only	Plane Elements Shear Panel Membrane Bending Only Plate Laminate Plane Strain Axisymmetric Shell Plot Only Volume Elements Axisymmetric Solid Solid Laminate
		Other Elements Mass Mass Matrix Spring/Damper to Ground DOF Spring to Ground Element Material Orient	d

Cancel

Formulation...


С A D I S Объекты модели Femap и команды – Граничные условия

Закрепления	Нагрузки
Model > Constrain	Model > Load

Для закреплений и нагрузок дерево проекта «Model Info» позволяет:

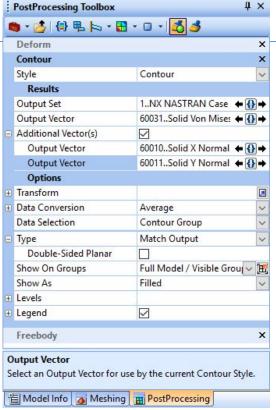
- Создание, редактирование, выделение и удаление полных наборов нагрузок и закреплений
- Создание, редактирование, выделение и удаление отдельных видов нагрузок и закреплений
- Создание и редактирование нагрузок и настроек Body, Nonlinear, Dynamic и Heat Transfer

СА D I S Объекты модели Femap и команды – Сетка

Настройки сетки и разбиение геометрии	Отдельно узлы	Отдельно элементы
Mesh > Mesh Control Mesh > Geometry	Model > Node	Model > Element

Дополнительные инструменты для создания и редактирования сетки доступны в Meshing Toolbox

СА D I S Объекты модели Femap и команды – Анализ

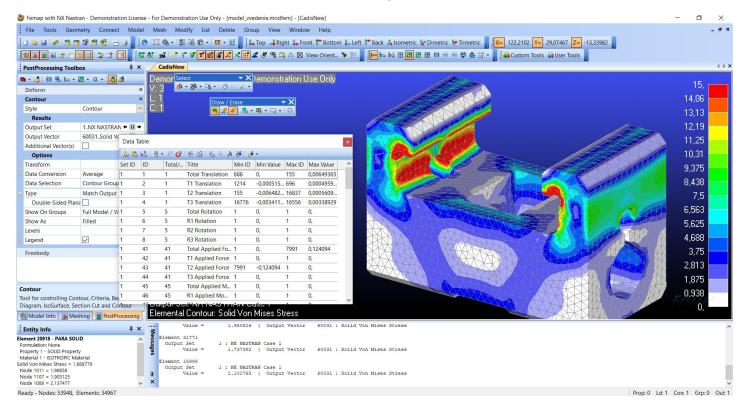

Анализ	Просмотр результатов	Отчетность
Model > Analysis	View > Select (F5) View > Options (F6)	List > Output commands
	View > Advanced Post	FostProcessing Toolbox
	·	Deform × Contour ×

Создайте и отправьте анализ с помощью команды Model> Analysis

Панель инструментов PostProcessing Toolbox является основным интерфейсом для графического отображения результатов моделирования с помощью:

- Деформированного вида
- Отображение в различных графических режимах и векторном виде
- Создание и визуализация Freebody

Используйте таблицу данных и набор команд List > Output для создания таблицы результатов



СА D I S Обзор графических инструментов пользователя

Графический интерфейс Femap имеет несколько компонентов:

- Панель открытых в данный момент моделей
 - Одновременно можно открывать и отображать несколько моделей
 - Динамическое масштабирование, панорамирование и вращение осуществляется с помощью
- Выпадающие меню команд
- Панели инструментов настраиваются пользователем
- Плавающие панели инструментов быстрого доступа – создаются и настраиваются пользователем
- Панель состояния Femap в нижней части графического окна

Femap, как и большинство FEA-решателей не имеет единиц измерения.

Ho...

- Стандартные материалы Femap и библиотеки сечений балочных КЭ используют единицы измерения дюймы-фунты
- Импортированная геометрия по умолчанию конвертируется в дюймы. Изменить единицы измерения импортированной геометрии можно в общих настройках Preference опцией Geometry Scale Factor
 - Parasolid (независимо от программы) всегда хранит данные в метрах

Инструмент преобразования единиц позволяет пользователю преобразовывать единицы данных в модели

Пользователь должен знать о используемой системе единиц

• Вы можете использовать команду «File -> Notes», чтобы сделать примечание для справки в будущем и добавить комментарий в файл анализа.

Следующие две страницы имеют диаграммы, которые показывают согласованные значения единиц, которые должны использоваться для получения верных результатов.

Единицы измерения для задач механики деформируемого твердого тела

Model Data	English Ibf – in- s	Metric mN – mm - s	Metric N – mm - s	SI N – m - s
Length	inches	mm	mm	m
Mass Density	lbm/in³	kg/mm³	Tonnes/mm³	kg/m³
Force	lbf	mN	N	N
Stress, Pressure, Modulus of Elasticity, Shear Modulus	psi	КРа	MPa	Pa
Moment, Torque	lbf-in	N-mm	N-mm	N-m
Velocity	in/sec	mm/sec	mm/sec	m/s
Acceleration	in/sec ²	mm/sec ²	mm/sec ²	m/sec ²
Temperature	°F	°C	°C	°C
Coefficient of Thermal Expansion	in/degF	mm/degC	mm/degC	m/degC

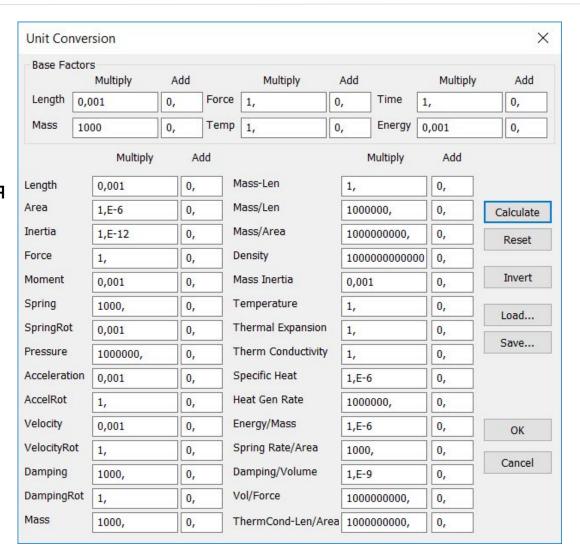
СА D I S Единицы измерения для термических задач

Model Data	English lbf – in- s	Metric mN – mm – s	Metric N – mm – s	SI N — m — s
Length	inches	mm	mm	m
Mass Density	lbm/in ³	kg/mm³	Tonne/mm ³	kg/m³
Temperature	°F	°C	°C	°C
Coefficient of Thermal Expansion	in/°F	mm/°C	mm/°C	m/°C
Energy	lbf-in	μ	mJ	J
Thermal Conductivity	lbf/sec-°F	W/mm-°C	W/mm-°C	W/m-°C
Specific Heat	lbf/sec²-°F	μJ/kg-°C	mJ/Tonne-°C	J/kg-°C
Heat Transfer Coefficient	lbf/in-sec-°F	W/mm ²	W/mm ²	W/mm²
Heat Generation (Flux)	lbf-in/sec	W	W	W

СА D I S Преобразование единиц измерения

Используйте команду Tools > Convert Units для преобразования единиц измерения.

- Преобразование всех величин с использованием преобразования базовых единиц
- Преобразование определенных объектов с индивидуальными коэффициентами преобразования

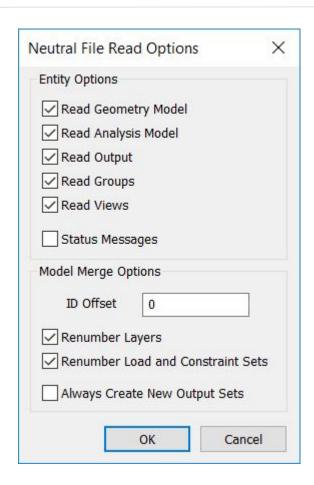

Пример. Преобразуйте единицы N-мм в модель в N-m

Длина: 0,001 м = 1 мм

Масса: 1000 кг = 1 тонна

Сила: 1 N = 1 N

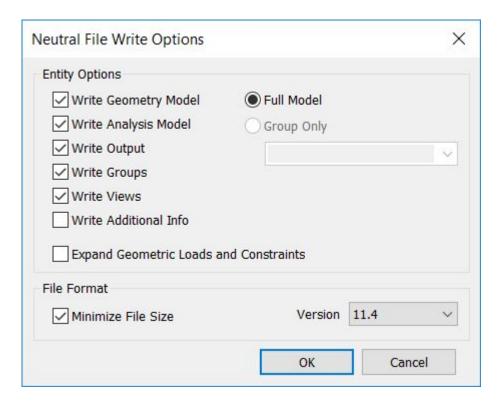
Энергия: 0,001 Н•м = 1 Н•мм



СА D I S Форматы файлов Femap

Команды File > Save и File > Save As сохраняют файлы модели Femap в виде двоичных файлов .modfem

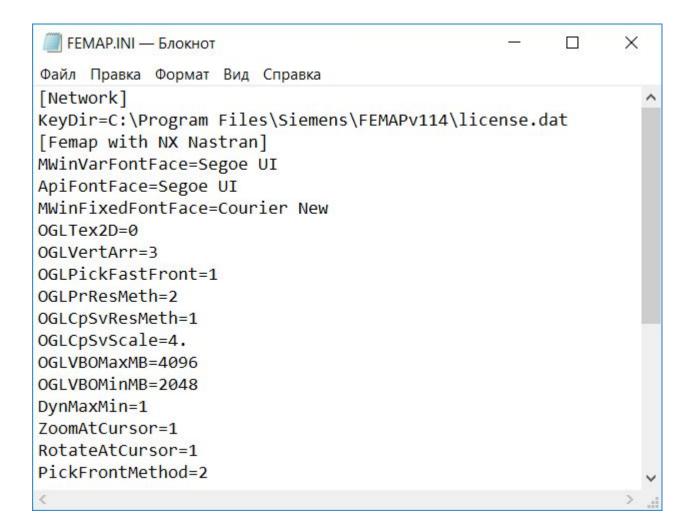
- Файлы Femap, сохраненные в версиях до Femap v10.2, хранятся в виде файлов с расширением .mod
- Femap автоматически преобразует файлы старой версии .mod или .modfem в текущую версию Femap
- Когда это преобразование происходит, вам предоставляется поле сообщения нейтрального файла Femap, затем диалоговое окно «Neutral File Read Option», в котором вы подтверждаете параметры для преобразования из старого файла модели.
- Используйте параметр ID Offset, чтобы избежать перезаписи существующих объектов в вашей модели Femap



Форматы файлов Femap (продолжение)

Нейтральный файл Femap (расширение файла .NEU) является текстовым файлом Ascii и может быть экспортирован из Femap с помощью команды File > Export > Femap Neutral.

- Эта команда позволяет вам написать нейтральный файл для более ранней версии Femap (v4.1 через текущую версию Femap).
- Нейтральные файлы используются для объединения моделей Femap.
- Объекты, не поддерживаемые в более ранней версии Femap, будут игнорироваться при записи нейтрального файла.

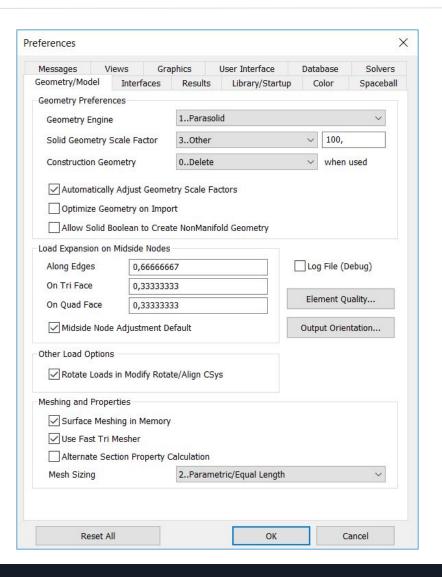


Hacтройки Preference используются для оптимальной конфигурации производительности Femap и удобства работы. Они подробно описаны в руководстве Femap Commands и в онлайн-справке Femap.

Настройки хранятся в файле femap.ini в основной папке установки Femap

Чтобы задать настройки, выберите команду «File» > «Preference»

С A D I S Диалоговое окно настроек Femap Preference

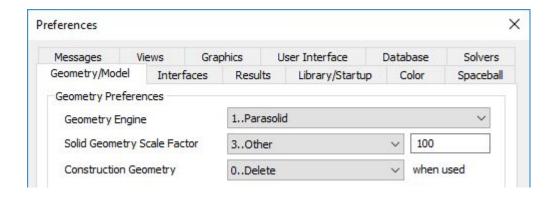


www.cad-is.ru

Hастройки Preference имеют следующие вкладки

- Messages
- Views
- Graphics
- User Interface
- Database
- Geometry/Model
- Interfaces
- Results
- Library/Startup
- Color
- Spaceball

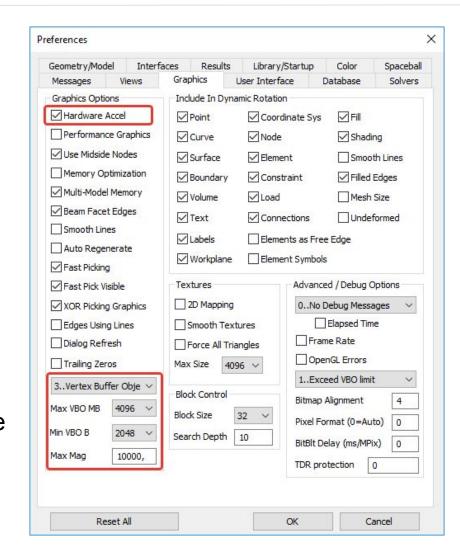
Следующие слайды описывают три наиболее важные вкладки настроек Preferences: Geometry / Model, Graphics and Database


Диалоговое окно настроек Femap Preference – коэффициент масштабирования Geometry Scale Factor

Выберите геометрическое ядро Parasolid или Standard для вашей модели Femap. Рекомендуется использовать ядро Parasolid, в противном случае можно импортировать, создавать или редактировать только геометрию каркаса.

Femap хранит геометрию в метрах. Коэффициент масштабирования Solid Geometry Scale Factor используется для внутреннего преобразования ваших геометрических единиц в метры в Parasolid.

- Например, если вы выбираете Inches, коэффициент масштабирования составляет 39,37 (дюймы/метр).
 Femap использует инверсию этого номера для хранения геометрии в своей базе данных моделей (1 дюйм = 0,0254 метра).
- Это масштабирование позволит вам импортировать модели, которые находятся за пределами моделирования Parasolid (куб 1000 метров на каждую сторону, в центре 0,0,0 или +/- 500 метров в X, Y и Z)


Диалоговое окно настроек Femap Preference – настройки графики

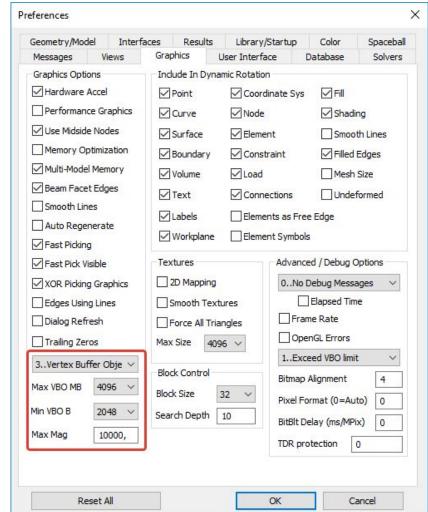
www.cad-is.ru

Диалоговое окно «Графика» позволяет управлять настройками графики и настройками динамического вращения.

- Аппаратное ускорение может быть отключено, если графическая карта или ее драйверы вызывают нестабильность в Femap.
- Performance Graphics может использоваться только тогда, когда присутствуют видеоадаптеры, поддерживающие OpenGL 4.2 или выше.
- VBO могут использоваться, когда присутствуют видеоадаптеры, поддерживающие OpenGL 2.1 или выше.
- Включение меньше объектов из списка Include In Dynamic Rotation улучшит плавность динамического вращение больших моделей.
- Сообщения Advanced/Debug Messages могут быть включены, чтобы помочь команде разработчиков диагностировать сложные проблемы с геометрией, если они возникнут.

Диалоговое окно настроек Femap Preference – Performance Graphics и VBOs


www.cad-is.ru


Включение параметра Performance Graphics может значительно повысить производительность на моделях с большим количеством:

- Объемных тел
- Точек
- Узлов
- Объемных и плоских элементов

Использование Vertex Buffer Arrays (VBOs) еще больше повышает производительность для моделей с включенной графикой или без нее.

Установите значение Max VBO MB не более 75% (%) от общей памяти видеокарты.

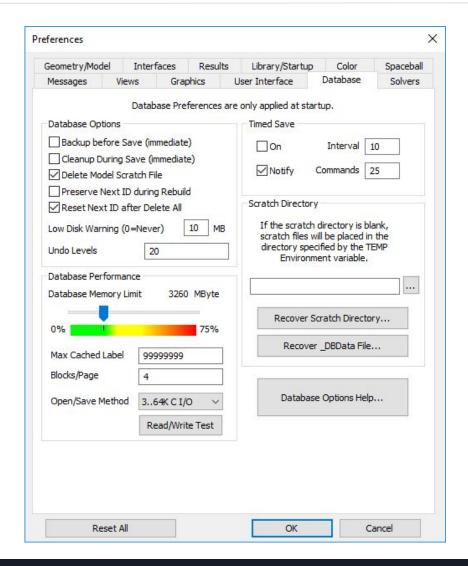
СА D I S Требования к производительности видеокарты

При использовании Femap следует учитывать разрешение рабочего стола. Чем выше разрешение рабочего стола, тем труднее обрабатывать графические объекты.

Если у Femap появляются графические ошибки, причиной этому может быть драйвер для вашей видеокарты. Необходимо постоянно обновлять драйвера видеокарты.

- Драйверы от производителей чипсета графических карт, как правило, более стабильны, чем
 драйверы от производителя видеокарты. (например, используйте драйвер ATI или nVidia, а не драйвер
 ASUS)
- Вы также должны установить настройки производительности вашей видеокарты в режим по умолчанию. В некоторых случаях установка карты для оптимальной производительности для различных приложений может привести к сбою Femap.

С A D I S Настройки Femap - База данных Data Base

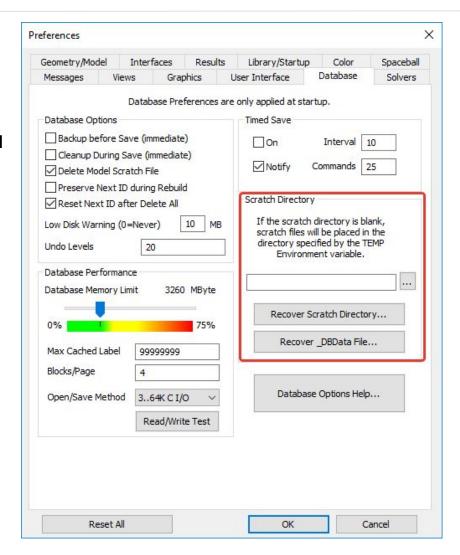

www.cad-is.ru

На вкладке Data Base определяются различные параметры производительности :

- Параметры базы данных
- Производительность базы данных
- Срочное сохранение
- Каталог временных файлов

Нажмите кнопку «Справка по параметрам базы данных», чтобы получить подробную информацию о настройках на этой вкладке.

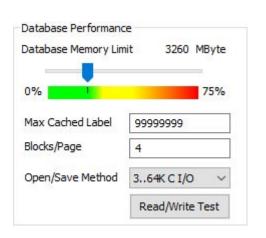
• Обратите внимание, что любые изменения, внесенные на вкладку Data Base, требуют выхода и запуска нового сеанса Femap.



www.cad-is.ru

Этот параметр указывает местоположение файлов каталога Scratch, где во время сеанса Femap записываются временные файлы и файлы для восстановления.

- Если эта опция оставлена пустой, Femap будет записывать свои временные файлы в папку Windows TEMP
- Установка папки Femap Scratch или установка переменной TEMP в местоположение сетевого файла может серьезно ухудшить производительность Femap и значительно увеличить время сохранения файлов.
- Закройте и перезапустите Femap после изменения расположения папки Scratch Directory.



Настройки Femap – Параметры производительности базы данных

Эти параметры указывают на:

- Ограничение памяти базы данных устанавливает максимальный объем системной памяти, который FEMAP будет использовать для хранения частей модели и получения результатов из памяти.
- Max Cached Label устанавливает самую большую метку, для которой FEMAP зарезервирует память. Этот параметр должен быть установлен на идентификатор, превышающий любой объект в модели.
 - Значение по умолчанию 99 999 999
- Blocks/Page Оптимальная настройка этого числа часто зависит от скорости диска и контроллера. Значение по умолчанию «4» было определено с помощью тестирования для обеспечения наилучшей производительности в широком диапазоне значений для ограничения памяти базы данных и использования настроек по умолчанию для нескольких типов дисков. Вы можете попробовать другие значения от 1 до 15. Как правило, это должно быть полезно при использовании таких накопителей, как SSD.
- Open/Save Method используйте для оптимизации производительности чтения/записи файлов Femap. Используйте тест чтения/записи, чтобы определить, какой метод будет работать лучше всего на вашем компьютере.

