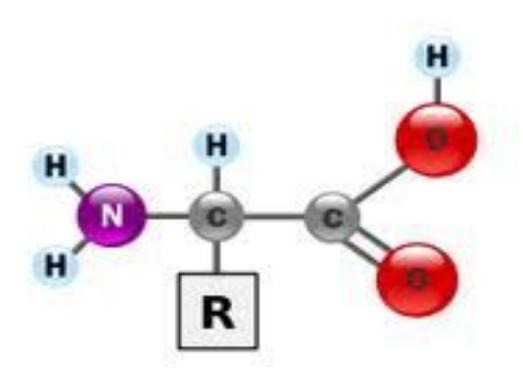
Тема урока «Состав, строение и функции белков»

Элементарный состав белков

- **С** (углерод) 50-55%;
- **О** (кислород) 21-24%;
- N (a3oT) 15-17% (≈ 16%);
- **H** (водород) 6-8%;
- **S** (cepa)– 0-2%.


Азот - это постоянный компонент белков и по его количеству можно определить содержание белка в тканях.

- Содержание белков в органах человека составляет в среднем 18-20% сырой массы ткани.
- В пересчете на сухой остаток мышцы до 80%, сердце 60%, печень 72%, легкие, селезенка 82 84%.

Аминокислоты- мономеры белка

- В состав большинства белков входят 20 разных аминокислот из около 170 известных.
- Как из 33 букв алфавита мы можем составить бесконечное число слов, так из 20 аминокислот – бесконечное множество белков. В организме человека насчитывается до 100 000 белков.

Аминокислота- амфотерное соединение

АМИНОГРУППА (свойства основания) КАРБОКСИЛЬН АЯ ГРУППА (свойства кислот)

Аминокислоты

Заменимые

Заменимые аминокислоты могут синтезироваться в организме.

Потребность организма осуществляется за счет поступления белков пищи.

К заменимым аминокислотам относятся аланин, аспарагин, аспарагин, аспарагин, аспарагиновая кислота, глицин, глютамин, глютаминовая кислота, тирозин, цистеин, цистин и др.

Незаменимые

Незаменимыми для взрослого здорового человека являются 8 аминокислот: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин.

Для детей незаменимыми также являются аргинин и гистидин.

<u>Не могут быть</u> <u>синтезированы в организме.</u>

Содержание незаменимых **жинно**кислот Изолейцин Лейцин Лизин Метионин

Белки

Белки – это нерегулярные полимеры, мономерами которых являются α-аминокислоты.

Простые (протеины) только из аминокислот

альбумины, глобулины

Сложные (протеиды) белок + небелковая часть *гемоглобин,*

нуклеопротеид

Гликопротеид Ы (аминокислоты+ углеводы) (имунноглобулин)

Липопротеиды (аминокислоты + липиды)

Металлопротеи

НЫ (аминокислоты+ металлы)

Сложные белки

Нуклеопротеи ДЫ (аминокислоты+ нуклеиновые кислоты)

Фосфопротеи ДЫ (аминокислоты + остатки фосфорной кислоты)

Хромопротеид

Ы (аминокислоты + окрашенными простетические группы различной химической природы)

По общему типу строения белки можно разбить на три группы:

Фибриллярные белки.

Образуют микрофиламент Ы,

микротрубочки, фибриллы, поддерживают

структуру клеток

и тканей.

Например кератин и

Глобулярны

е белки.

Например,

глобулярный

белок,

триозофосф

атизомераза

Мембранные белки —

выполняют

функцию

рецепторов, а

также

обеспечивают

трансмембранны

й транспорт

различных

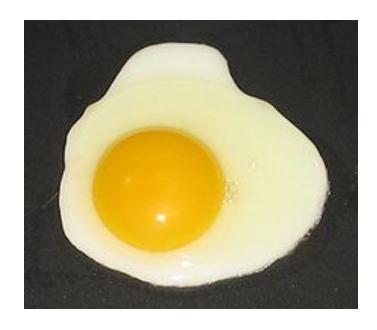
веществ.

Денатурация белка

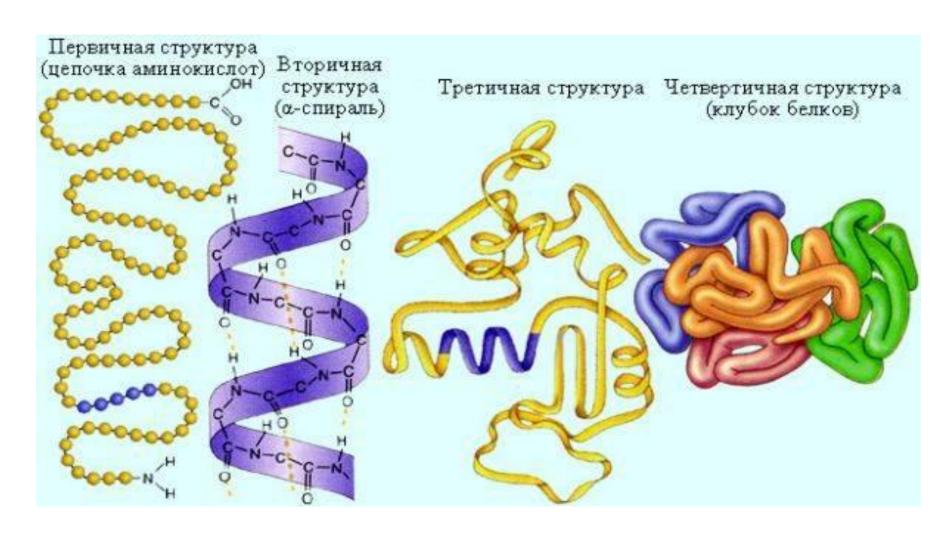
Денатурация белков – это потеря белками их биологических свойств (каталитических, транспортных и т.д.) вследствие изменения структуры белковой молекулы.

Денатурацию вызывают:

- физические факторы (высокая температура, ионизирующее излучение),
- •химические факторы (концентрированные кислоты, щелочи, реакционно-активные соединения, тяжелые металлы).

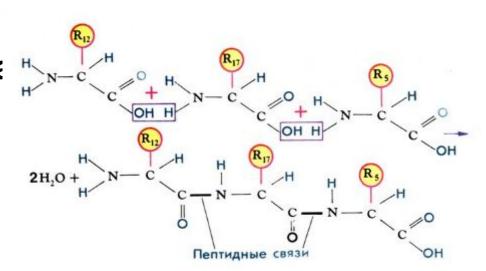

Денатурация белка

Обратимая (ренатурация)


после устранения воздействия денатурирующего агента белок восстанавливает свою активность.

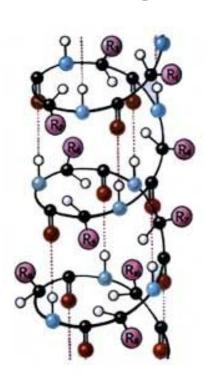
Необратимая

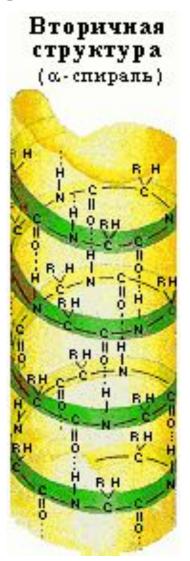
происходит необратимое нарушение первичной структуры белка



Уровни организации белковой молекулы

Первичная структура белков


- Первичная структура определенная последовательность
- аминокислотных остатков в полипептидной цепи. Связи между аминокислотами ковалентные, а следовательно очень прочные



Вторичная структура

- Вторичная структура конформация полипептидной цепи, закрепленная множеством водородных связей между группами N-H и C=O.
- Одна из моделей вторичной структуры а-спираль.

Вторичная структура

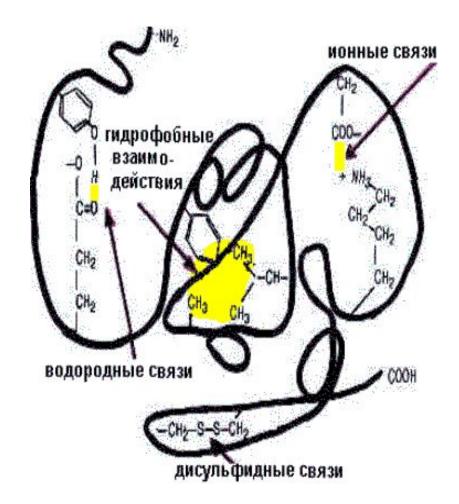
α-спираль

α–спираль открыта в 30-ых годах XX века Л.Полингом.

спираль стабилизируется в пространстве благодаря образованию дисульфидных и большого количества водородных связей между аминокислотами полипептидной цепи оси спирали.

Например – кератин.

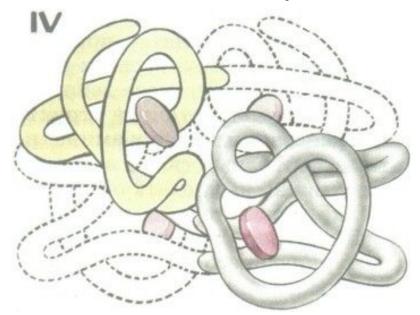
В - спираль


β – спираль (складчатая) – две параллельные полипептидные цепи, соединены между собой с помощью водородных связей, перпендикулярно цепям.

Подобную структуру имеют фибриллярные белки (коллаген, фиброин (белок шелка)).

Третичная структура

Третичная структура - форма закрученной спирали в пространстве.



Связи, стабилизирующие третичную структуру:

- 1. электростатические силы притяжения между R-группами, несущими противоположно заряженные ионогенные группы (ионные связи);
- 2. водородные связи между полярными (гидрофильными) R-группами;
- 3. гидрофобные взаимодействия между неполярными (гидрофобными) R-группами;
- 4. дисульфидные (ковалентные) связи между радикалами двух молекул цистеина. Они повышают стабильность третичной структуры, но в ряде

Четверичная структура

• Четвертичная структура - агрегаты нескольких белковых макромолекул (белковые комплексы), образованные за счет взаимодействия разных

В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы МОГУТ СОСТОЯТЬ ИЗ десятков молекул.

Проверь себя

название структуры	особенности	химические связи		
первичная	цепочка аминокислот	пептидные связи (ковалентные, прочные)		
вторичная	цепочка закручена в спираль	водородные (непрочные)		
третичная	дальнейшее "сворачивание" молекулы, образование глобулы, специфичной для каждого белка.	водородные и ковалентные связи между удаленными участками цепи (дисульфидные),		
четвертичная (есть не у всех белков)	комплекс из нескольких белковых макромолекул	гидрофобные)		

Функции белков в организме

Белки — необходимые компоненты всех живых организмов, они участвуют в большинстве жизненных процессов клетки.

Белки осуществляют обмен веществ и энергетические превращения.

Белки входят в состав клеточных структур — органелл, секретируются во внеклеточное пространство для обмена сигналами между клетками, гидролиза пищи и образования межклеточного вешества.

Гормоны инсулин, гормон роста и др.

Ферменты рибонуклеаза, трипси дик и Рик - полимераз и др.)

защитные белки (имму ноглобулины, интерфенов и др.)

Рецепторные белки (родопсин. холинорецептор H-ma

БЕЛКИ

Регуляторные белки Гистоны, репрессоры и др.)

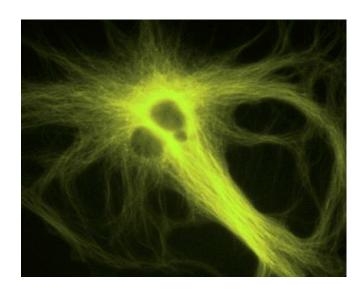
Структурные белки Кератин, коллаген и др

Записные белии

Двигательные белки

(актин, миозин и др.)

Транспортные белки гемоглобин, многлобин мембранная АТФаза н др.)

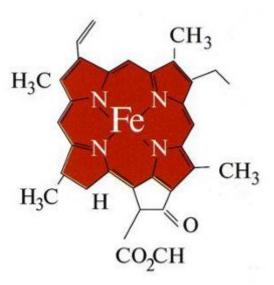

Токсины (Ботулинический дифтерийный и др.)

(казении, япиный альбумин и др.) Антибистики неокаршиностатия.

актиностатии и ар

Структурная функция

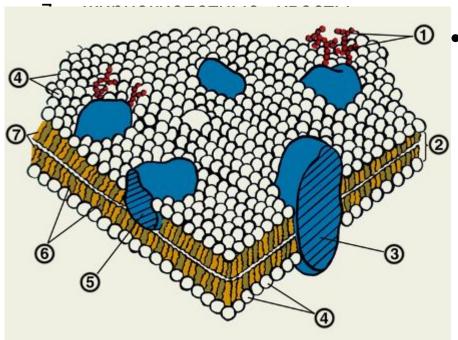
- Структурные белки цитоскелета, как своего рода арматура, придают форму клеткам и многим органоидам и участвуют в изменении формы клеток.
- Коллаген и эластин основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.



Микротрубочки из эндотелиальных клеток крупного рогатого скота

Транспортная функция

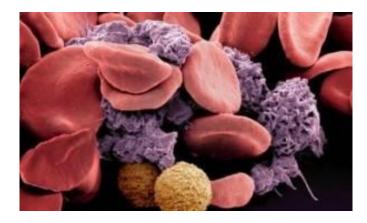
Транспортный белок гемоглобин переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким, а также гомологичные ему белки, найденные во всех царствах живых организмов.


Мембранные белки участвуют в транспорте малых молекул через мембрану клетки, изменяя её проницаемость (белки-каналы и белки-переносчики).

Белки-каналы содержат внутренние, заполненные водой поры, которые позволяют ионам (через ионные каналы) или молекулам воды (через белки-аквапорины) перемещаться через мембрану.

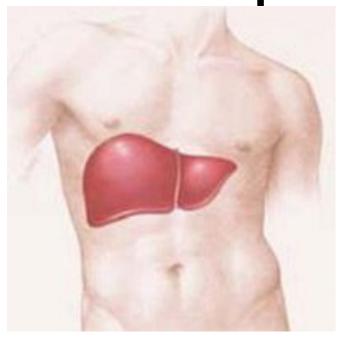
Белки-переносчики связывают, подобно ферментам, каждую переносимую молекулу или ион и, в отличие от каналов, могут осуществлять активный транспорт с использованием энергии

Регуляторная функция


- Схема строения биологической мембраны:
- 1 углеводные фрагменты гликопротеидов;
- 2 липидный бислой;
- 3 интегральный белок;
- 4 «головки» фосфолипидов;
- 5 периферический белок;
- 6 холестерин;

- Многие процессы внутри клеток регулируются белковыми молекулами, которые регулируют транскрипцию, трансляцию, сплайсинг, а также активность других белков.
- Регуляторную функцию белки осуществляют либо за счёт ферментативной активности (например, протеинкиназы), либо за счёт специфического связывания с молекулами ферментов.

Защитная функция


 Фибриногены и тромбины, участвуют в свёртывании крови.

Физическая защита.

В ней принимает участие коллаген — белок, образующий основу межклеточного вещества соединительных тканей (в том числе костей, хряща, сухожилий и глубоких слоев кожи (дермы);

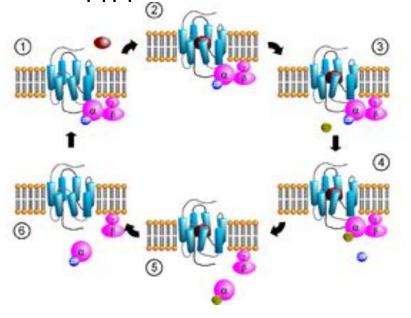
кератин, составляющий основу роговых щитков, волос, перьев, рогов и др. производных

Защитная функция

• Печень- «чистит» кровь, то есть перестраивает токсин так, чтобы он мог выйти из организма.

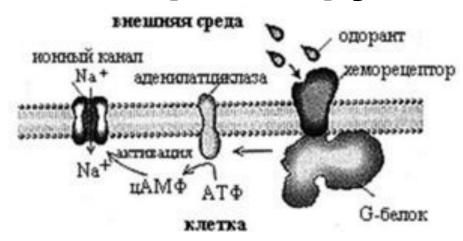
- **Химическая защита.**Связывание токсинов белковыми молекулами может обеспечивать их детоксикацию.
- Особенно важную роль в детоксикации у человека играют ферменты печени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма.

Защитная функция



Иммунная защита.

- •Белки, входящие в состав крови и других биологических жидкостей, участвуют в защитном ответе организма как на повреждение, так и на атаку патогенов.
- •Иммуноглобулины нейтрализуют бактерии, вирусы или чужеродные белки.
- •Антитела, входящие в состав иммунной системы, присоединяются к чужеродным для данного организма веществам, антигенам и тем самым нейтрализуют их, направляя к местам уничтожения.
- •Антитела могут секретироваться в межклеточное пространство или закрепляться в мембранах специализированных В-лимфоцитов, которые называются плазмоцитами.


Сигнальная функция

• Цикл активации G-белка под действием

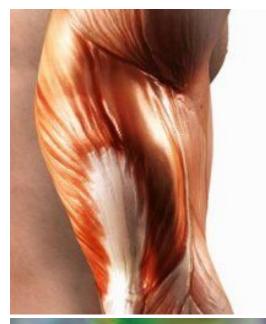
- Сигнальная функция белков способность белков служить сигнальными веществами, передавая сигналы между клетками, тканями, органами и разными организмами.
- Сигнальную функцию выполняют белки-гормоны, цитокины, факторы роста и др.
- Большинство гормонов животных это белки или пептиды. Связывание гормона с рецептором является сигналом, запускающим в клетке ответную реакцию.

Рецепторная функция

- Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану.
- Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях свет, механическое воздействие (например, растяжение) и другие стимулы.
- При воздействии сигнала на определённый участок молекулы белок-рецептор происходят её конформационные изменения. В результате меняется конформация другой части молекулы, осуществляющей передачу сигнала на другие клеточные компоненты.

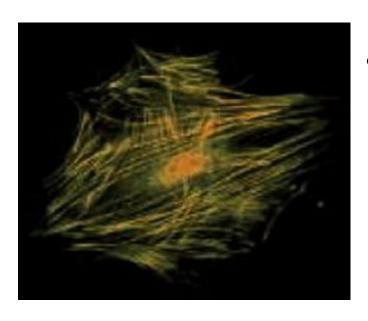
Каталитическая функция

- Наиболее хорошо известная роль белков в организме катализ различных химических реакций.
- Ферменты группа белков, обладающая специфическими каталитическими свойствами, то есть каждый фермент катализирует одну или несколько сходных реакций.
- Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации и репарации ДНК и матричного синтеза РНК.
- Известно несколько тысяч ферментов; среди них такие, как, например, пепсин, расщепляют белки в процессе пищеварения.

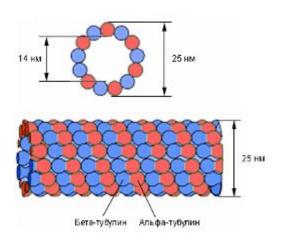

Запасная (резервная) функция белков

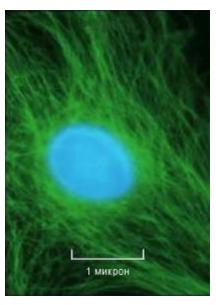
Резервные белки запасаются в качестве источника энергии и вещества в семенах растений и яйцеклетках животных; белки третичных оболочек яйца (овальбумины) и основной белок молока (казеин) также выполняют, главным образом, питательную функцию.

Моторная (двигательная)



функция Моторные белки обеспечивают движения организма (например, сокращение мышц, в том числе локомоцию (миозин), перемещение клеток внутри организма (например, амебоидное движение лейкоцитов), движение ресничек и жгутиков, а также активный и направленный внутриклеточный транспорт (кинезин, динеин).


Микрофиламенты



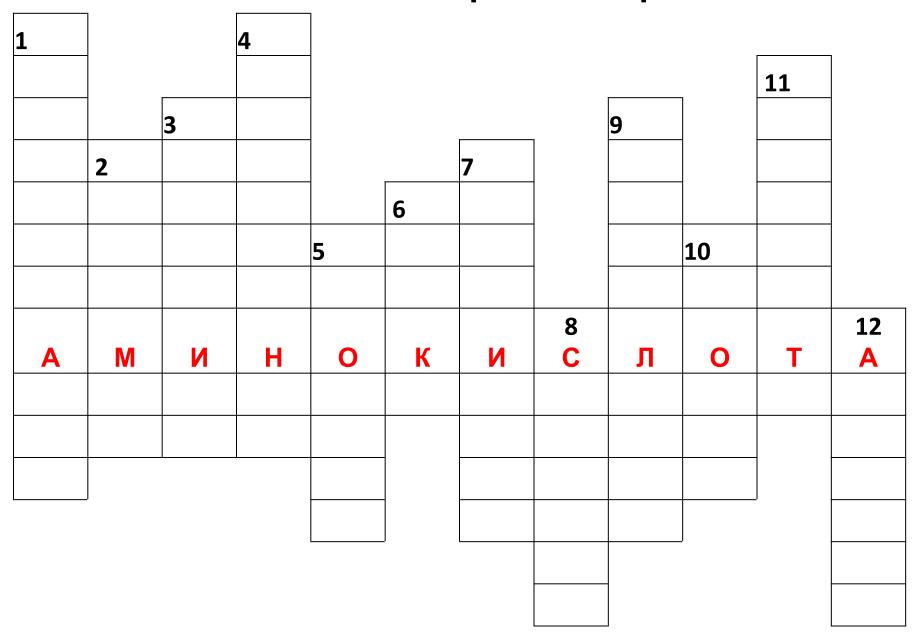
- Микрофиламенты состоят из белка актина. Они образуют сплошную сеть под наружной мембраной клетки, придавая ей упругость и прочность.
- Пучки микрофиламентов образуются на переднем конце движущейся амебы, именно они выпячивают ложноножку (псевдоподию).

Микротрубочки

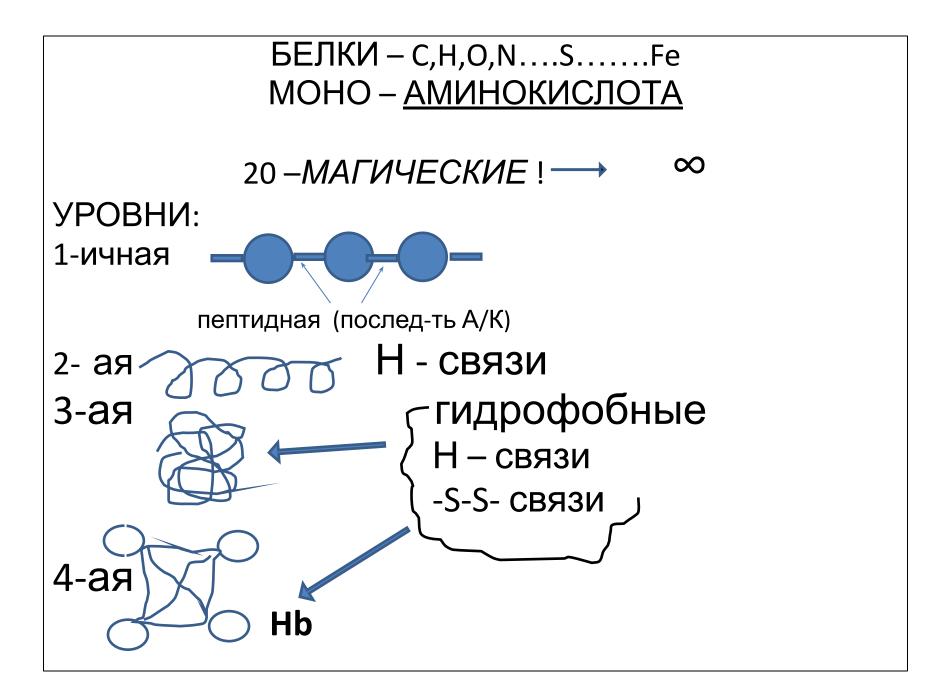
- Микротрубочки представляют собой трубчатые образования, состоящие из белка тубулина.
- По ним движутся органеллы от одного участка клетки к другому (другие белки прикрепляют органеллы к наружной стороне «трубы» и обеспечивают движение).
- Во время митоза они обеспечивают расхождение хромосом к полюсам клетки.

Энергетическая функция

- При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж.
- Сначала белки распадаются до аминокислот, а затем до конечных продуктов воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.


токсины (от треческого toxikon — яд), вещества бактериального, растительного или животного происхождения, способные угнетать физиологические функции, что приводит к заболеванию или гибели животных и человека. По химической природе все токсины— белки или

Разгадай кроссворд


РЕШИ КРОССВОРД:

- 1.Изменение первичной структуры белка
- 2. Высокомолекулярные соединения.
- 3.Белки, состоящие только из аминокислот.
- 4. Соединение, сочетающее в себе признаки кислот и оснований.
- 5. Пространственная конфигурация представляющая третичную структуру белка.
- 6. Высокомолекулярные органические непериодические полимеры, состоящие из аминокислот.
- 7. Химические связи, соединяющие аминокислоты в первичной структуре белка.
- 8. Форма, образующая вторичную структуру белковой молекулы.
- 9.Транспортный белок, для которого характерна четвертичная структура.
- 10.Двигательный белок.
- 11. Белки, являющиеся биокатализаторами.
- 12. Белки на поверхности клетки или в растворе, по которым Т-лимфоциты различают свои клетки от чужих.

Поверь себя

Д			Α								
E			M						_	Ф	
Н		П	Ф				_	Γ		Е	
Α	П	Р	0			П		E		Р	
Т	0	0	Т		Б	E		M		M	
У	Л	Т	E	Г	E	П		0	M	E	
Р	И	E	Р	Л	Л	Т		Г	И	Н	
A	M	И	Н	0	К	И	С	Л	0	T	A
Ц	E	Н	0	Б	И	Д	П	0	3	Ы	Н
И	Р	Ы	E	У		Н	И	Б	И		Т
Я				Л		Ы	Р	И	Н		И
				Α		E	Α	Н			Г
							Л	_			E
							Ь				н

Составим опорный конспект по теме «Белки. Строение и функции белков»

ДЕНАТУРАЦИ 1 → 2,3,4 — Янеобратимая ренатурация 1! Необратимая

Функции:

- 1.Каталитическая (ферменты)
- 2. Защитная (иммуноглобулин)
- 3. Сигнальная (родопсин)
- 4. Транспортная (гемоглобин)
- 5.Структурная (коллаген, кератин)
- 6. Двигательная (актин, миозин)
- 7. Энергетическая (1гр.- 17,6 кДж)
- 8. Регуляторная (инсулин, гистоны)
- 9.Запасающая (казеин)