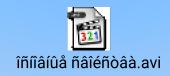

AMUHbl

Амины – это производные аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородный радикал.

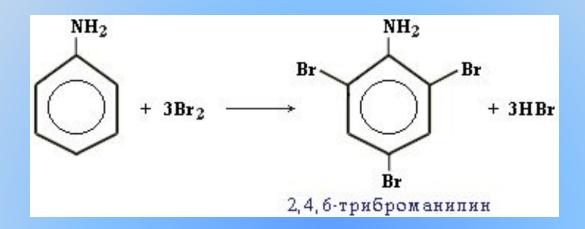


Наличие неподелённой пары электронов у атома азота объясняет общие свойства аминов и аммиака

Химические свойства аминов:

Основные свойства:

$$CH_3$$
- NH_2 + HCI (CH_3 - NH_3) CI метиламин хлорид метиламмония


Распределить в ряд по уменьшению основных свойств: 1) аммиак;

- 2) метиламин; 3) метилэтиламин; 4) дифениламин; 5) анилин;
- 6) триметиламин.

NH-CH₃ CH₃-N-CH₃ CH₃-NH₂ NH₃
$$C_2$$
H₅ C_3 C_4 C_5 C_4 C_5 C

Ароматические амины менее основны, чем алифатические.

Для ароматических аминов характерны также реакции замещения в бензольном ядре

Бромирование анилина

Взаимодействие аминов с азотистой кислотой:

$$\tilde{N}_{1}$$
 \tilde{N}_{2} \tilde{N}_{2} \tilde{N}_{1} \tilde{N}_{2} \tilde{N}_{2} \tilde{N}_{3} \tilde{N}_{2} \tilde{N}_{3} \tilde{N}_{2} \tilde{N}_{3} \tilde{N}_{2} \tilde{N}_{3} \tilde{N}_{2} \tilde{N}_{3} \tilde{N}_{3} \tilde{N}_{4} \tilde{N}_{5} \tilde{N}_{5}

Третичные амины с азотистой кислотой не реагируют.

Реакции алкилирования аминов

Этим способом получают из первичных аминов вторичные и третичные, а из вторичных – третичные.

В избытке алкилгалогенида образуются третичные амины:

МОЧЕВИНА

диамид угольной кислоты

$$H_2$$
N-C-NH₂

Слабые основные свойства, реагирует с одним эквивалентом кислоты:

$$H_2N-C-NH_2 + HNO_3 \longrightarrow \begin{bmatrix} H_2N-C-NH_3 \\ 0 \end{bmatrix}^{\dagger}NO_3$$

Гидролиз мочевины:

$$H_2N-C-NH_2 + H_2O \xrightarrow{H^+} 2NH_3 + H_2O + CO_2$$

Реакция образования биурета:

$$H_2N-C-NH_2 + H_2N-C-NH_2 \xrightarrow{t^0} H_2N-C-HN-C-NH_2 + NH_3$$

Реакция разложения мочевины азотистой кислотой:

$$H_2N-C-NH_2 + HNO_2 \longrightarrow HO-C-OH + 2N_2 + 2H_2O$$

$$\downarrow \\ H_2O + CO_2$$

Реакция образования барбитуровой кислоты:

ì à ëî í î â û é ý ô è ð

áàðáèòóðî âàÿ êèñëî òà

Образование уреидокислот:

$$\tilde{N}H_3$$
-COOH + CI_2 $\xrightarrow{P_{\hat{e}\check{d}}}$ CH_2 -COOH + HCI

Образование уреида кислоты:

$$\tilde{N}H_{3}-C$$
O

+ $H_{2}N-C-NH_{2}$
O

 $\tilde{N}H_{3}-C$
O

 $HN-C-NH_{2}$
O

 $HN-C-NH_{2}$
O

óðåèä óêñóñí î é êèñëî òû

AMUHOKUCIOMbl

В молекулах аминокислот содержится и кислотная, и основная группы, поэтому аминокислоты проявляют амфотерные свойства. В растворе аминокислоты существуют в виде биполярного (цвиттер-) иона.

$$NH_2$$
-COOH \Longrightarrow NH_3 -CH₂-COO

Как карбоновые кислоты они образуют функциональные производные:

a) соли
$$H_2N-CH_2-COOH + NaOH \rightarrow H_2N-CH_2-COO-Na + H_2O$$

б) сложные эфиры

$$H+$$
 $H_2N-CH_2-COOH + C_2H_5OH \longrightarrow H_2N-CH_2-COOC_2H_5 + H_2O$

в) амиды
$$H_2N-CH_2COOH + NH_3 \longrightarrow H_2N-CH_2-CONH_2 + H_2O$$

Реакции α-, β-, γ-аминокислот, протекающие при нагревании

а) нагревание α-аминокислот

б) нагревание β-аминокислот

CH₃-CH-CH-COOH
$$\xrightarrow{t}$$
 CH₃-CH=CH-COOH + NH₃
 $\stackrel{[NH_2H]}{[NH_2H]}$
 β -àì èí î ì ànëyí ày êènëî òà êðî òî í î âày êènëî òà

в) нагревание у-аминокислот

Реакция дезаминирования аминокислот

CH₃-CH-COOH + HNO₂
$$\longrightarrow$$
 CH₃-CH-COOH + N₂ \uparrow + H₂O OH
àëàí èí ì î ëî ÷í àÿ êèñëî òà

Реакция декарбоксилирования аминокислот

$$\begin{array}{c} N \\ - CH_2\text{-}CH\text{-}COOH \\ N \\ N \\ H \end{array} \begin{array}{c} \ddot{\text{aae}} \ddot{\text{abe}} \ddot{\text{abe}} \ddot{\text{ae}} \ddot{\text{ae}} \ddot{\text{abe}} \ddot{\text{abe}} \ddot{\text{ae}} \ddot{\text{abe}} \ddot{$$

Для аминокислот характерна реакция поликонденсации с образованием пептидов: