Лекция 8. Ионизирующее излучение реактора

- Ионизирующим называют излучение, взаимодействие которого со средой приводит к образованию положительных и отрицательных ионов и свободных электронов из электрически нейтральных атомов и молекул.
- В ЯР оно является следствием радиоактивного распада, т. е. любого превращения атомного ядра, приводящего к изменению заряда, массы или энергетического состояния этого ядра.
- Радиоактивный распад происходит по экспоненциальному закону:

•
$$N(t) = N_0^* e^{-\lambda t}$$
, (n.1.31)

- N (T_{1/2})/ N₀ = $e^{-\lambda T_{1/2}}$ = 1/2
- где N_0 , начальное число атомов, то есть число атомов для t=0. N(t) текущее (в момент времени t) количество радиоактивного нуклида;
- λ, постоянная распада (вероятность распада ядра в единицу времени), с⁻¹,
- т (тау) среднее время жизни радиоактивного ядра, т = $1/\lambda$, c;
- Т_{1/2} =0,693 т время, в течение которого распадается в среднем половина исходного количества радиоактивного вещества, с.
- $T_{1/2} = 0,693 \text{ T} = \ln 2/\lambda = \text{T} \ln 2$

Единица измерения активности распад/в секунду (расп/с). В СИ эта единица называется Беккерель (Бк). В практических расчетах используют единицу кюри и её дробные единицы: милликюри и микрокюри. 1Ки =3,7*10¹⁰Бк.

• Радиоактивные вещества, находясь в растворенном или взвешенном состоянии в жидкости или газе объемом V (м³, л), создают определенную концентрацию активности, которая характеризуется удельной активностью, выраженной в кюри на единицу объема среды:

•
$$C_V = C/V \text{ Ku/m}^3 \text{ (Ku/л)}.$$
 (п.1.32)

• Удельная активность твердых радиоактивных веществ обычно выражается активностью единицы массы:

•
$$C_m = C/m \ Ku/кг.$$
 (п.1.33)

• Удельная активность чистого нуклида с массовым числом А и периодом полураспада Т (с)

• Cm =
$$\frac{6.023 * 10^{26}}{A} * \lambda \frac{BK}{KF} = \frac{1,13 * 10^{16}}{AT} \frac{Ku}{KF}$$
 (п.1.34)

- Поверхностная активность (активность поверхности) это поток излучения с единицы площади S (м²) радиоактивного вещества [част/(м²*с)].
- Следует отличать понятие «загрязненность поверхности», характеризующее собой количество радиоактивного вещества на единице площади (Бк/м², Ки/м² и др.).

- Активность при смешении двух сред, имеющих соответственно объемы V_1 (л) и V_2 (л) и удельные активности C_{V1} (Ки/м²) и C_{V2} (Ки/м²), получаем из соотношения C_V ($V_1 + V_2$) = $C_{V1} V_1 + C_{V2} V_2$, равной:
- $C_V = (C_{V1} V_1 + C_{V2} V_2) / (V_1 + V_2) Ku/m^2$. (n.1.35)
- При сообщении объемов двух сред с различной активностью по изменению удельной активности одной среды можно оценить скорость перемешивания сред (например, течь теплоносителя G м³/ч из одного контура в другой).
- Исходя из соотношения $C_V(V_2 + \Delta V) = C_{V1}\Delta V + C_{V2}V_2$, получаем:

• G =
$$\Delta V/t = \frac{V2}{t} * \frac{C_v - C_{V2}}{C_{v1} - C_v}$$
 м³/ч (п.1.36)

• где C_{V1} и C_{V2} (Ки/м³) — удельные активности по данному нуклиду первой и второй сред, имеющих объемы V_1 и V_2 (м³), C_v — удельная активность второй среды через время t (ч), за которое в нее поступит активное вещество первой среды в объеме ΔV .

В дозиметрии ионизирующих излучений используются следующие понятия, определения и единицы измерения.

- Поглощенная доза Д средняя энергия, переданная излучением веществу в некотором элементарном объеме. Единицей поглощенной дозы является джоуль на килограмм (Дж/кг), получившая в системе СИ название грей (Гр):
- 1 Гр=1 Дж/кг=100 рад.
- Рад специальная единица поглощенной дозы излучения, равная 100 эрг поглощенной энергии на 1 г вещества.
- Единица рад служит для измерения поглощенной дозы любого вида излучения для любой среды.
 - 1 рад=100 эрг/г=0,01 Дж/кг=0,01 Гр.
- Экспозиционная доза полный заряд ионов одного знака, возникающих в воздухе при полном торможении всех вторичных электронов, образованных фотонами в малом объеме воздуха.
- Единица экспозиционной дозы Кулон на килограмм (Кл/кг).

Специальной единицей в дозиметрии является рентген — доза рентгеновского или ү-излучения, которая в 1 см³ воздуха при давлении 760 мм рт. ст. и температуре 0°С производит ионизацию, соответствующую одной электростатической единице заряда каждого знака (2.08*10⁹ пар ионов).

- При дозе 1 Р в 1 см³ воздуха поглощается 87 эрг энергии, а в 1 г биологической ткани — 93—95 эрг. Эта единица применяется для γизлучения с энергией фотонов не выше 3 МэВ:
- 1 Р=0,2850 Кл/кг.
- Эквивалентная доза Н —величина, введенная для оценки радиационной опасности хронического облучения излучением произвольного состава и определяемая как произведение поглощенной дозы Д на средний коэффициент качества излучения Q в данной ткани:
- H (бэр) =QД (рад). (п.1.37)

Специальной единицей эквивалентной дозы является бэр — такое количество энергии, поглощенное в 1 г ткани, при котором наблюдается тот же биологический эффект, что и при поглощенной дозе излучения в 1 рад рентгеновского или ү-излучения.

- бэр используется для оценки поглощенной дозы от любого вида излучения:
- 1 бэр = 100 эрг/г/Q = 1 рад/Q = 0,01 Гр/Q = 0,01 Зв
- В СИ единицей эквивалентной дозы является Зиверт:
- 1 Зв = 1 Гр/Q = 100 рад/Q = 100 бэр.
- Безразмерный коэффициент качества Q показывает, во сколько раз отличаются неблагоприятные биологические последствия облучения человека различными видами излучения по сравнению с γ- излучением (табл. 1.2).
- Он используется только для целей радиационной безопасности при дозах не более 100 бэр.

Таблица 1. 2 коэффициент качества Q показывает, во сколько раз отличаются неблагоприятные биологические последствия облучения человека различными видами излучения по сравнению с ү- излучением

Вид излучения	Q	Допустимая мощность дозы				
		бэр/год	бэр/неделя	рад/год	рад/неделя	
Рентгеновское излуче- ние, ү-кванты и β-частицы	1	5,0	0,1	5,0	0,1	
Тепловые нейтроны	3	5,0	0,1	1.67	0,033	
Нейтроны с энергией 0,1—10 МэВ и протоны	10	5,0	0,1	1,67 0,5	0,01	
α-частицы с энергией до 10 МэВ и тяжелые ядра отдачи	20	6,0	0,1	0,25	0,005	
.,,				3		

- Ро Мощность дозы измеряется в
- рад/ч, Р/ч, бэр/ч
- или в производных от них единицах:
- мрад/ч, мР/ч, мбэр/ч, мР/с, мкР/с и т. п. Соотношения между долевыми единицами: 1 Р/ч=280 мкР/с, 1 мкР/с= 3,6 мР/ч и др. Доза Д, отнесенная к единице времени t, называется мощностью дозы.
- Если рассматриваемый промежуток времени значительно меньше периода полураспада радиоактивного нуклида, то

Естественный радиоактивный фон

- Естественный радиоактивный фон это мощность дозы ионизирующих излучений для данной местности, создаваемая космическими излучениями и радиоактивностью почвы, сооружений и живых объектов при отсутствии посторонних источников ионизирующих излучений.
- На земной поверхности на уровне моря для средних широт естественный фон принимают равным 10^{5*} мбэр/год, что соответствует примерно 0,01 мбэр/ч. Мощность дозы только космического излучения (без нейтронной компоненты) составляет 28 мбэр/год, нейтронная компонента создает дополнительную мощность дозы 25 мбэр/год. С высотой над уровнем моря мощность дозы излучения быстро растет.
- Естественный фон внешнего излучения на территории России создает мощность экспозиционной дозы в пределах 4—20 мкР/ч (40—200 мР/год).

«Нормы радиационной безопасности НРБ—76»,

- Устанавливают систему дозовых пределов и правила их применения, предусматривают следующие основные принципы радиационной безопасности:
- непревышение установленного основного дозового предела;
- исключение всякого необоснованного облучения;
- снижение дозы излучения до возможного низкого уровня.
- Для лиц, постоянно или временно работающих непосредственно с источниками ионизирующих излучений, основными дозовыми пределами являются:
- а) предельно допустимая доза (ПДД)—наибольшее значение индивидуальной эквивалентной дозы за год, которое при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами;

- б) предельно допустимое годовое поступление (ПДП) Такое I поступление радиоактивных веществ в организм в течение года которое за 50 лет создает в критическом органе эквивалентную дозу, равную 1 ПДД.
- Отличия для различных категорий лиц разных органов человека рассмотрены в НРБ—76. Для лиц, подвергающихся профессиональному внешнему облучению, установлена ПДД всех видов излучения 5 бэр в год, что соответствует при непрерывной работе 0,1 бэр в неделю.
- Предельно допустимой недельной дозе 0,1 бэр ,(100 мбэр в неделю) в зависимости от биологического эффекта воздействия различных видов ионизирующих излучений, учитываемого коэффициентом качества Q (п.1.37), соответствуют мощности дозы, приведенные в табл. 1.2.

Предельно допустимые уровни (ПДУ) внешнего ионизирующего излучения, соответствующие ПДД 100 мбэр в неделю, представлены в табл. 1.3.

Таблица 1.3. Требование безопасности сводится к тому, чтобы суммарное воздействие не превышало одного ПДУ.

Вид излучения		7	Предельно допустимая мощность довы интенсивность или плотность потока излучения			
	Эмергия излучения	Дозы, поток энерган излучения или поток частиц за одну исдели	едлинца измереныя	при работе f=36 ч в неделю	при работе f ч в не- делю	
Рентгеновское и У- излучения	До 3 МэВ	100 MP	мР/ч	2,8	100/t	
То же	3-104 MaB	250 · 1010 MaB/M2	104 MaB/(M2 · c)	20	700/t	
β-излучение	До 10 МэВ	2,5-101* β-qacT	10 ⁶ μ ² · c	0,2	7/t	
Тепловые ней- троны	0,025 вВ	100-1010 нейтр/м²	10 ⁸ нейтр м²⋅с	7,5	270/t	
Медленные ней- троны	0,1 sB	72-1010 нейтр/м ²	То же	5,5	200/t	
Промежуточные нейтроны	5 кэP	82-1010 нейтр/м2		6,4	230/t	
То же Быстрые нейт- роны	20 кэВ 10 МэВ	40-1010 нейтр/м ² 2,6-1010 нейтр/м ²	::	3,1 0,2	110/t 7,2/t	
Очень быстрые нейтроны	200 МэВ	1,3-1010 нейтр/м ²		0.1	3,6/t	
Сверхбыстрые нейтроны	10° MaB	0,13·1010 нейтр/м ²	10⁴ нейтр м²⋅с	0,3	11/t	

- 1.33 Удельная активность водяного теплоносителя первого контура ЯР равна 10⁻³ Ки/л. Оценить течь (м³/ч) воды первого контура во второй через ПГ, если активность воды второго контура (v_{IIк}=10 м³) в течение 30 мин увеличилась с 10⁻⁵ до 10⁻⁴ Ки/л.
- Решение. Согласно (п.1.36):
- $G_{I-II k} = 2 M^3/4$.
- 1.34 Сколько рентген составляет доза γ-излучения в 1 рад для тела человека?
- Решение. Дозе в 1 рад соответствует 100 эрг поглощенной энергии на 1 г биологической ткани, а дозе в 1 Р 95 эрг/г. 1 Следовательно, дозе γ излучения в 1 рад соответствует 100/95 = 1,05 P = 1 Р.

- 1.35 Доза, поглощенная в биологической ткани при облучении ее тепловыми нейтронами, составляет 0,5 рад. Какой дозе ү -облучения это соответствует по биологическому воздействию?
- *Решение*. Для тепловых нейтронов Q=3 (табл. 1.2). Следовательно, поглощенной дозе тепловых нейтронов 0,5 рад соответствует 3*0,5=1,5 рад γ -излучения.
- 1.36 Определить дозу облучения за 4 ч работы при мощности дозы 0,5 мкР/с.
- *Решение*. Согласно Д = Р₀t=0,5*4*3600=7,2 мР.
- 1.37 Какую в среднем дозу получит человек за 70 лет жизни от естественного фона ионизирующих излучений?
- *Решение*. По формуле Д = Р₀t находим:

Основные термины

- Доза излучения (radiation dose) мера воздействия (в области радиационной безопасности) ионизирующего излучения на биологический объект, в частности человека.
- Дозовые затраты (dose commitments) сумма индивидуальных доз излучения, воздействующего на персонал, полученных или планируемых при выполнении работ по эксплуатации, обслуживанию, ремонту, замене или демонтажу оборудования ядерной установки (атомной станции).
- Коллективная доза излучения (collective radiation dose) сумма индивидуальных доз излучения для различных категорий облучаемых лиц за определенный промежутоквремени. Измеряется в человеко-зивертах (чел-Зв)

- Коэффициент качества излучения (quality factor) коэффициент Q для учета биологической эффективности разных видов ионизирующего излучения при определении эквивалентной дозы излучения. Для получения эквивалентной дозы поглощенная доза рассматриваемого излучения должна быть умножена на коэффициент качества. Для рентгеновского, бета- и гамма-излучений коэффициент Q = 1, протонного и нейтронного
- излучений (быстрые нейтроны) Q = 10, альфа-излучения Q = 20
- **Кумулятивная доза (cumulative dose)** сумма поглощенных доз излучения, полученных рассматриваемым объектом, независимо от того, было ли облучение одно- или многократным
- Основной дозовый предел (main dose limit) основная регламентируемая Нормами радиационной безопасности величина — предельно допустимая доза (ПДД) или предел дозы (ПД)

- Пороговая доза (threshold dose) минимальная доза излучения, вызывающая данный биологический эффект. В отношении биологического воздействия излучения Меж-
- дународная комиссия по радиологической защите и аналогичные национальные комиссии всех стран придерживаются концепции беспороговой дозы
- Эквивалентная доза излучения (equivalent dose) величина, введенная для оценки радиационной опасности хронического облучения человека ионизирующими
- излучениями и определяемая суммой произведений поглощенных доз отдельных видов излучений на их коэффициенты качества. Единица измерения эквивалентной дозы —зиверт (Зв).

• Экспозиционная доза (exposure dose) — количественная характеристика рентгеновского и гамма-излучений, основанная на их ионизирующем действии и выраженная суммарным электрическим зарядом ионов одного знака, образованных в единице объема воздуха. Единицей измерения экспозиционной дозы в СИ является кулон на килограмм (Кл/кг), внесистемная единица экспозиционной дозы — рентген (Р)