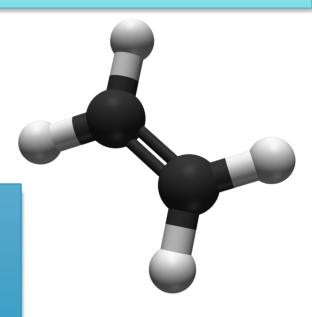


Валентности углерода до предела насыщенны атомами водорода

Валентности углерода не до предела насыщенны атомами водорода

Aлкан $\xrightarrow{-H_2}$ Алкен

Алкены


Алкены -это непредельные углеводороды, содержащие в молекуле, кроме одинарных связей, одну двойную углерод-углеродную связь

 C_nH_{2n}

Общая формула алкенов

n - число атомов углерода

Молекула этилена C_2H_4

Имеет плоскостное строение

Гомологический ј	RÇ	д алкенов
Название		Формула

 C_2H_4

 C_3H_6

 C_4H_8

 C_5H_{10}

 C_6H_{12}

 C_7H_{14}

 C_8H_{16}

 C_9H_{18}

 $C_{10}H_{20}$

 $C_{16}H_{32}$

Этен

Пропен

Бутен

Пентен

Гексен

Гептен

Октен

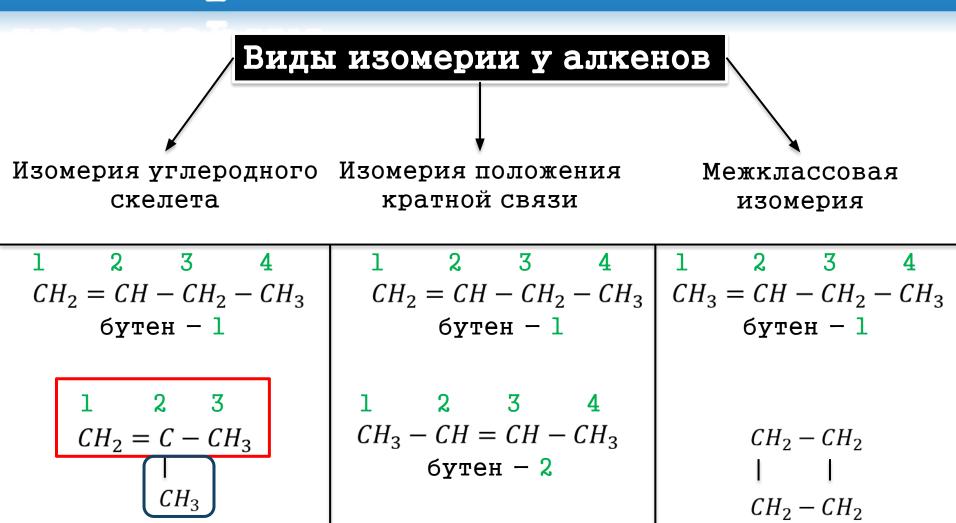
Нонен

Децен

Гексадецен

Номенклатура (названия)

Алгоритм названия алкенов соединений


- 1. В структурной формуле выбирают самую длинную цепь атомов углерода, *содержащую двойную связь* (главная цепь)
- 2. Атомы углерода главной цепи <mark>нумеруют</mark>, начиная с того конца, к которому ближе *двойная связь*
 - 3. В начале названия перечисляются радикалы с указанием номеров атомов углерода, с которыми они связаны. Если одинаковых радикалов несколько, то цифрой указывают место каждого из них и указывают их число приставкой ди-, три-, тетра-
- 4. Основа названия наименование алкена с тем же числом атомов углерода, что и в <mark>главной цепи</mark>
- 5. <u>В конце названия ставится наименьший номер атома углерода, у</u> которого есть двойная связь

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 - CH_3$$
 $CH_2 = CH_3$ $CH_3 - CH_3 - CH_3$ $CH_3 - CH_3$

2-метил-5-этил**гептен** - 1

Изомерия

2 - метилбутен -1

*цикло*бутан

Химические свойства алкенов

1. Горение
$$C_x H_y + (x+0.5y)O_2 \rightarrow xCO_2 + 0.5yH_2O + Q$$

2. Реакции присоединения
а) водорода — гидрирование
$$CH_2 = CH_2 + H_2 \xrightarrow{Pt} CH_3 - CH_3$$
Этан
6) воды — гидратация
$$CH_2 = CH_2 + H_2O \xrightarrow{H_3PO_4,p,t} CH_3 - CH_2 - OH$$
Этиловый спирт
в) галогенов — галогенирование
$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

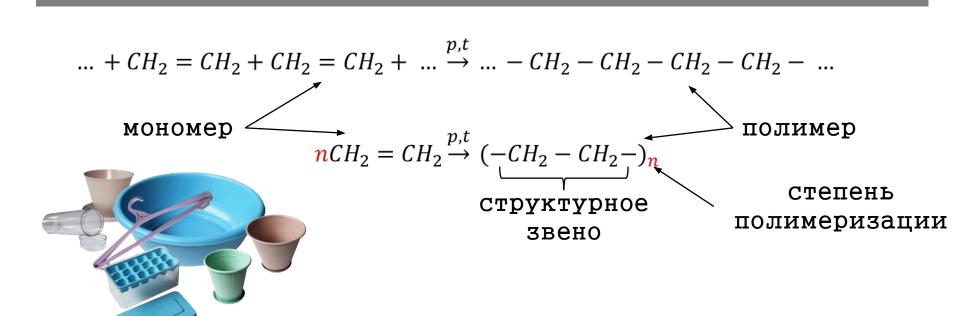
$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

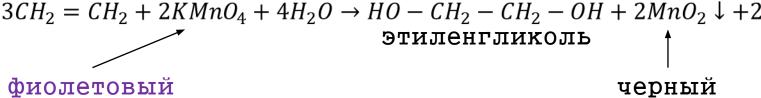
$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$

$$CH_2 = CH_2 + Br_2 \rightarrow CH_2 - CH_2$$


$$CH_2 = CH_2 + Br_2$$

Этилен обесцвечивает бромную воду, за счет присутствия в молекуле этилена двойной связи. Реакция этилена с бромной водой — качественная реакции на непредельные углеводороды


Химические свойства алкенов

Реакция полимеризации — это химический процесс соединения множества исходных молекул низкомолекулярного вещества (мономера) в крупные молекулы (макромолекулы) полимера

3) Реакция обесцвечивания раствора перманганата калия $KMnO_4$ (качественная реакция) $3CH_2 = CH_2 + 2KMnO_4 + 4H_2O \rightarrow HO - CH_2 - CH_2 - OH + 2MnO_2 \downarrow +2KOH$

Получение этилена

1) Дегидрирование этана

$$CH_3 - CH_3 \xrightarrow{Pt,p,t} CH_2 = CH_2 + H_2$$

2) Дегидратация этилового спирта

$$CH_2 - CH_2 \xrightarrow{t, H_2SO_{4(\text{конц})}} CH_2 = CH_2 + H_2O$$
 $H = OH$

этиловый спирт

Реакция дегидратации — это процесс отщепления молекулы воды от молекулы органического соединения