Logging While Drilling

LWD 1 Positive Pulse

LWD System Overview Objectives

At the completion of this presentation you should be able to:

- 1. List the five component parts of an LWD system.
- 2. Name the current surface computer and list one advantage over a previous surface computer.
- 3. Describe the functions of a bus master.
- 4. Name the two current directional probes.
- 5. Identify the primary measurement of each sensor.
- 7. Describe the difference between the negative and positive pulser valves.

2002

- How do we categorize our systems?
 - Type of pulser?
 - Positive pulse
 - Negative pulse

© 2003, Halliburton

Engrave Corvince Inc

- How do we categorize our systems?
 - Data encoding scheme?
 - Pulse Position Modulation
 - Manchester

- How do we categorize our systems?
 - Pulse Position Modulation
 - Irregular time between pulses
 - Intermittent pulses

- How do we categorize our systems?
 - Manchester

2002

- Regular time between pulses
- Continuous pulses

Engrave Carriage Inc

• How do we categorize our systems?

Mud Flow

Electronics

Mud Flow

– Design of tools?

- Sonde based
- Insert based

The LWD System

- The five components of an LWD System:
 - Surface Computer
 - Downhole Computer Bus Master
 - Directional Sensors
 - Formation Evaluation Sensors
 - Pulser

INSITE

- Continuing development
- Windows NT soon Windows 2000
- Supports MWD, LWD, SDL and more
- Support for other Product Service Lines

• ISC

- Development finished
- DOS based
- Supports MWD, LWD
- Negative Pulse PPM and Positive Pulse Manchester

- ADAC and Data Handler
 - Development finished
 - DOS based
 - Supports LWD
 - Negative Pulse PPM

MSC

- Development finished
- Unix based
- Supports Directional Only and Gamma
- Positive Pulse Manchester

PCDWD

- DOS based
- Supports Directional Only and Gamma
- Positive Pulse Manchester

MPSR

- Development finished
- Introduced in Mid 80's
- Supports Directional Only
- Positive Pulse Manchester

Downhole Computer Bus Master

- What is a Bus Master?
 - Controls other sensors
 - Stores data
 - Prepares data for transmission

Downhole Computer Bus Master

- Six current tools can act as a Bus Master
 - CIM Central Interface Module
 - HCIM H is the type of processor
 - TM Telemetry Module
 - PCD Pressure Case Directional
 - PCG Pressure Case Gamma
 - SP4 Slim Phase 4

Engray Corving Inc

Pulsers

Negative Pulse

- -Vents mud to the annulus
- Decreases internal drillpipe pressure
- -Same pulser valve in $6^{3}/_{4}$ ", 8", $9^{1}/_{2}$ " collars
- -Different insert for 9 ¹/₂" pulser

Pulsers

Positive Pulse

- -Causes a restriction to mud flow
- –Increases internal drillpipe pressure
- -Same pulser in $3^{1}/_{2}$ " to 10" collars
- -Flow gear in 4 flow rate ranges

Directional Sensors

- Six directional sensors
 - Sonde based
 - Two current sensors
 - Positive Pulse
 - PCD Pressure Case Directional
 - Positive and Negative Pulse
 - DM Directional Module

Directional Sensors

- Five directional sensors
 - Sonde Based
 - Three no longer built, but still used
 - Positive Pulse
 - DEP Directional Electronic Probe
 - DEP II Directional Electronic Probe II
 - Negative Pulse
 - PM Position Monitor

- Sonde Based
 - Gamma
 - GM Gamma Module
 - PCG Pressure Case Gamma

- Insert Based
 - Gamma
 - DGR Dual Gamma Ray

- Insert Based
 - Resistivity
 - Electromagnetic Wave Resistivity

```
– EWR-S Shielded
```

- EWR-P4 Phase 4
- EWR-P4D Phase 4 Deep
- SP4Slim Phase 4

- Insert Based
 - Other sensors
 - Porosity
 - BAT Bi-modal AcousTic
 - CNØ Compensated Neutron Porosity
 - CTN Compensated Thermal Neutron Porosity
 - MRIL-WD- Magnetic Resonance Imaging Logging While Drilling

- Insert Based
 - Other sensors
 - Density
 - SLD Stabilized LithoDensity
 - ALD Azimuthal LithoDensity
 - Caliper
 - ACALAcoustiCaliper
 - Formation Pressure
 - GeoTap LWD Formation Tester

- Insert Based
 - Other sensors
 - Drilling Efficiency
 - WOB/TOB Weight on Bit/Torque on Bit
 - PWD Pressure-While-Drilling
 - DDS Drillstring Dynamics Sensor(Vibration)

Acronyms

```
3-1/8 in. EWR-Phase 4 — Electromagnetic Wave Resistivity Phase 4
   ABI – At Bit Inclination
   ACAL – AcoustiCaliper
ALD—Azimuthal LithoDensity
   BAT - Bi-modal AcousTic
   CNØ – Compensated Neutron Porosity
   CTN – Compensated Thermal Neutron Porosity
   DC – Driver Controller
   DDS – Drillstring Dynamics Sensor
   DEP II — Directional Electronic Probe II
   DEP – Directional Electronic Probe
   DGR – Dual Gamma Ray
   DM – Directional Module
   EWR-Phase 4 – Electromagnetic Wave Resistivity Phase 4
   EWR-Phase 4D – Electromagnetic Wave Resistivity Phase 4 Deep
   EWR-S – Electromagnetic Wave Resistivity Shielded
```

July 2,

2002

© 2003, Halliburton

Engrave Corviged Inc

27

Acronyms

```
GM - Gamma Module
  Man – Manchester encoding
  MEP – Mud-pulse Electronic Probe
   MRIL-WD - Magnetic Resonance Imaging Logging While Drilling
PCD-R – Pressure Case Directional Ruggedized
   PCG-R – Pressure Case Gamma Ruggedized
   PM – Position Monitor
   PPM – Pulse Position Modulation encoding
   PWD – Pressure-While-Drilling
   SBM – Smart Battery Module
   Scout Sonic
   SDC – Smart Driver Controller
   SLD – Stabilized Litho Density
   SPC NGP — Sensor Pressure Case Natural Gamma Probe
  TM – Telemetry Module
  WOB/TOB – Weight on Bit/Torque on Bit
```