

What changes during the drilling of a well that may affect the selection of an MWD system?

March 7

© 2001, Halliburton

- Hole Size (Collar Size)
- Mud Flow Rate
- Mud Density
- Formation Temperature
- Bottom Hole Pressure

March

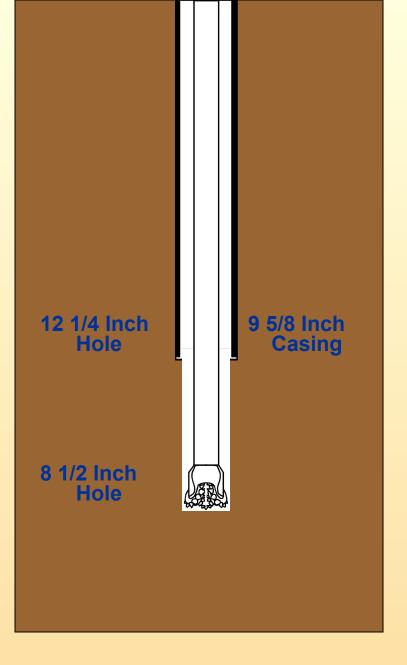
7

© 2001, Halliburton

Hole Size Usually decreases with hole depth Why?

March 7

© 2001, Halliburton


Hole Size

L Usually decreases with hole depth Why?

- Casing or liner is run to isolate shallower hole sections.
- A smaller diameter drill bit is then required to pass through the casing.
- Smaller diameter drill collars are used.

Ma	irch
----	------

© 2001, Halliburton

March 7

© 2001, Halliburton

System	Collar OD	Tvpical Hole Sizes
1200		24 to 12 1⁄4
650		8 ½ to 12 ¼
Slimhole	4 - ³ / ₄	6 to 6 ½
Superslim	$3^{-1}/_{8}$ to $3^{-1}/_{2}$	4 to 5 ?

March

7

© 2001, Halliburton

Hole Size

12 1/4 inch hole 8 inch collars Select 650 or 1200 System 8 1/2 inch hole 6-3/4 inch collars Select 650 system

March

7

© 2001, Halliburton

Mud Flow Rate Usually decreases with hole depth Why?

March 7

© 2001, Halliburton

Mud Flow Rate

L Usually decreases with hole depth Why?

- As hole diameter decreases less flow is required to clean the hole.
- As hole depth increases circulating pressure also increases
- Flow is reduced to keep the circulating pressure within limits.

March

7

© 2001, Halliburton 10 Energy Services Inc

	Flow Range
System	gpm
1500 option	1200 to 1500
1200	400 to 1200
650	225 to 650
Slimhole	150 to 350
Superslim	
Straight	60 to 175
Undercut	100 to 220

March 7

© 2001, Halliburton 11 Energy Services Inc

Flow Rate

12 1/4 inch hole

8 inch collars 850 gpm Select 1200 System 8 1/2 inch hole 6-3/4 inch collars 620 gpm Select 650 system

March

7

© 2001, Halliburton

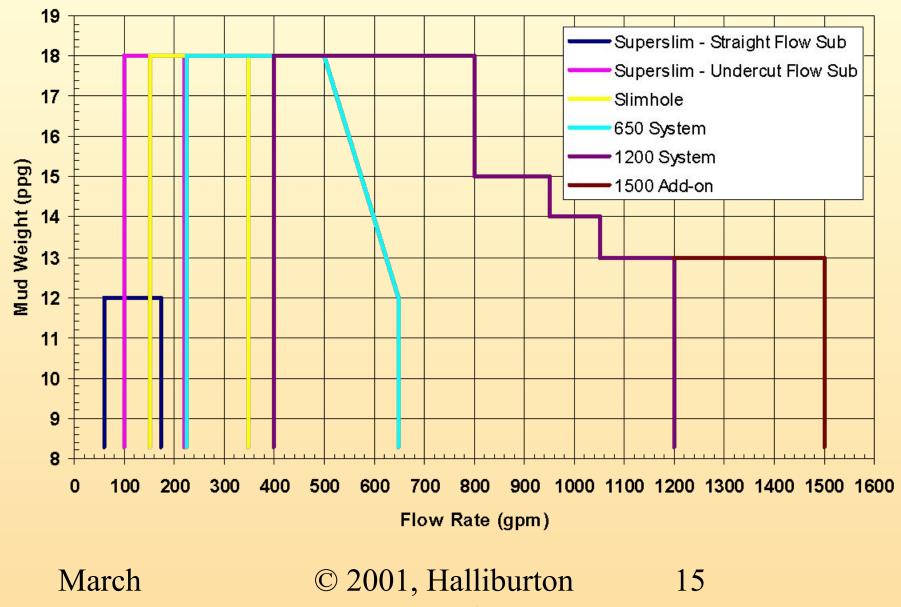
Mud Density Changes with hole conditions Why?

March 7

© 2001, Halliburton

Mud Density

Changes with hole conditions


Why?

- Mud density is adjusted to balance the formation pressure.
- It usually increases with depth, but may decrease again after casing is set.

March

© 2001, Halliburton

Flow Rate Envelopes

7

Energy Services Inc

Mud Density

12 1/4 inch hole

8 inch collars 850 gpm 12 ppg Select 1200 System 8 1/2 inch hole 6-3/4 inch collars 620 gpm 13 ppg Select 650 system

March

© 2001, Halliburton

16

Temperature

Increases with true vertical depth Why?

March 7

© 2001, Halliburton

Temperature

Increases with true vertical depth Why?

- Due to conductance of heat from earth's core to surface.
- Temperature increases between 0.5°-5°C per 100 m, average 2.5°C per 100 m
- Temperature increases between 0.25°-2.5°F per 100 ft, average 1.5°F per 100 ft

March 7

© 2001, Halliburton 18 Energy Services Inc

Temperature

– Affects the selection of:

• Pulser

March 7

© 2001, Halliburton

Pulser Temperature Ratings

Pulser	Maximum Temperature
Mk VI	175° C (347° F)
Mk VII	200° C (392° F)
Mk VIII	200° C (392° F)

March 7

© 2001, Halliburton

Temperature

12 1/4 inch hole

8 inch collars 850 gpm 12 ppg 100° C at 10,000 ft Select 1200 System Any pulser 8 1/2 inch hole 6-3/4 inch collars 620 gpm **13 ppg** 145° C at 14,000 ft Select 650 system Any pulser

March 7

© 2001, Halliburton 21

Temperature

- Affects the selection of:
 - Pulser
 - Directional sensor

March 7

© 2001, Halliburton

 Directional Sensor Temperature Ratings

Sensor	Maximium Temperature
DEP, DEP II	140° C (284° F)
PCD, PCD-K, PCD-R	150° C (302° F)
DM	175° C (347° F)

March

7

© 2001, Halliburton

23

Energy Services Inc

Temperature

12 1/4 inch hole

8 inch collars 850 gpm 12 ppg 100° C at 10,000 ft Select 1200 System Any pulser Any directional probe 8 1/2 inch hole 6-3/4 inch collars 620 gpm **13 ppg** 145° C at 14,000 ft Select 650 System **Any pulser** Do not use DEP/DEPII

March 7

© 2001, Halliburton

Temperature

- Affects the selection of:
 - Pulser
 - Directional sensor
 - Gamma sensor

March 7

© 2001, Halliburton

Gamma Sensor Temperature
 Ratings

	Maximum	
Sensor	Temperature	
PCG, PCG-R	150° C (302° F)	
GM	175° C (347° F)	

M	ar	C.	h

7

© 2001, Halliburton

Energy Services Inc.

Temperature

12 1/4 inch hole

8 inch collars 850 gpm **12 ppg** 100° C at 10,000 ft Select 1200 System **Any pulser** Any directional probe Any gamma sensor

8 1/2 inch hole 6-3/4 inch collars 620 gpm **13 ppg** 145° C at 14,000 ft Select 650 System **Any pulser** Do not use DEP/DEPII Any gamma sensor

27

March

7

© 2001, Halliburton

Pressure

Two components

- Hydrostatic Pressure
- Circulating Pressure

March 7

© 2001, Halliburton

Hydrostatic Pressure Increases with true vertical depth Increases with increases in mud density Why?

March 7

© 2001, Halliburton

Hydrostatic Pressure

- Increases with true vertical depth
- Increases with increases in mud density Why?
 - Pressure = 0.052 x TVD (ft) x Mud Density (ppg)

March

7

© 2001, Halliburton

- Circulating Pressure T Increases with hole depth. Increases with increases in flow rate. Increases with increases in Mud Density, PV, YP. Increases with decreases in flow area of
 - drillstring, jets, and annulus.

March

7

© 2001, Halliburton

Pressure

What pressure is the tool exposed to?

March 7

© 2001, Halliburton

Pressure

What pressure is the tool exposed to?

- Hydrostatic Pressure plus the following circulating pressure losses:
 - Pressure loss in the BHA below the tool
 - Pressure loss at the jets
 - Pressure loss in the annulus

March

7

© 2001, Halliburton

Sensor Pressure Ratings

- Sondes are limited by pressure case.
- Superslim pressure cases have molded on centralizers, hence thinner walls, lower pressure rating.

March 7

© 2001, Halliburton

Sensor Pressure Ratings

	Pressure		
Sensor	Standard	Superslim	
DEP, DEP II	18,000 psi	15,400 psi*	
PCD-R/PCG-R	20,000 psi	??,??? psi*	
DM/GM	22,500 psi	16,500 psi*	

* Unofficial pressure rating

March 7

© 2001, Halliburton

Pressure

12 1/4 inch hole

8 inch collars 850 gpm **12 ppg** 100° C at 10,000 ft 6,240 hyd + 1,500 circ Select 1200 System Any pulser **Any directional probe** Any gamma sensor

8 1/2 inch hole 6-3/4 inch collars 620 gpm **13 ppg** 130 ° C at 14,000 ft 9,464 hyd + 1,200 circ Select 650 System Any pulser Do not use DEP/DEPII Any gamma sensor

March

7

© 2001, Halliburton

What other specifications are important? **Dogleg Severity** Sand Content **Plastic Viscocity** Lost Circulation Material **Tool Joint Torque**

March 7

© 2001, Halliburton

Dogleg Severity – Rotating is the worst situation

Collar Size	Rotating	Sliding
3-1/2, 4-3/4	14°/100 ft	30°/100 ft
6-1/2 to 7-1/4	10°/100 ft	21°/100 ft
7-1/4 to 9-1/2	8°/100 ft	14°/100 ft

March

© 2001, Halliburton

38

Sand Content

- Less than 2%, recommended less than 1%.
- Above 1100 gpm limited to 1% or less.

Plastic Viscosity

- Maximum 50 centipoise

March

7

© 2001, Halliburton

Lost Circulation Material (LCM)

- 40 lb/bbl medium non-fibrous (nut plug) and some fine fibrous (kwik seal)
- Superslim is less tolerant to LCM
 - Straight flow sub less than 7.5 lb/bbl
 - Undercut flow sub greater than 7.5 lb/bbl

March

7

© 2001, Halliburton

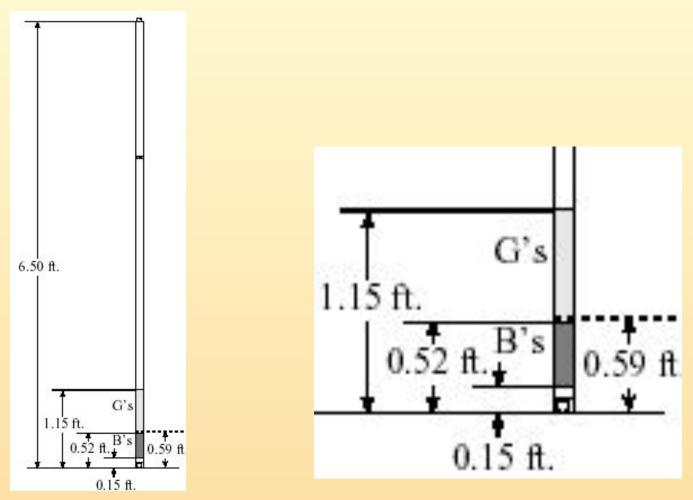
Tool Joint Torque

- Pin ID on positive pulse 1500, 1200, 650
 System HOS/HOC's are bored-out.
- Use torque specifications for standard sizes
 - For Pin ID 2.88 inch, use 2-13/16 inch
 - For Pin ID 3.31 inch, use 3-1/4 inch
 - For Pin ID 4.04 inch, use 4 inch

March

7

© 2001, Halliburton 41

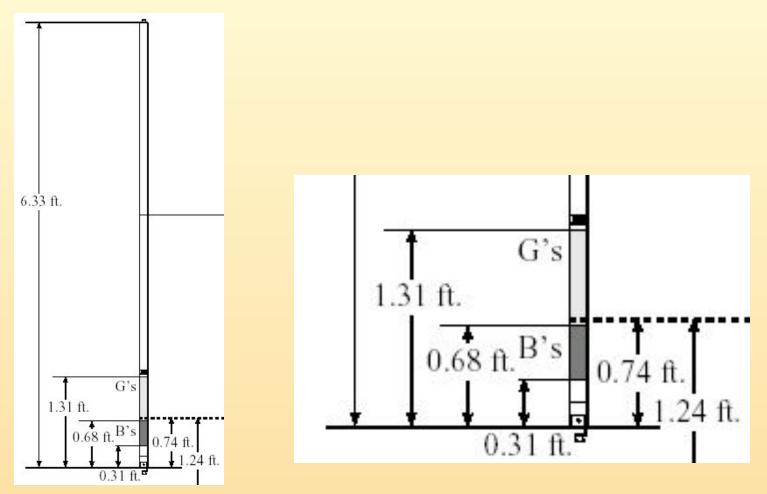

Sensor Measure Point

- Used to calculate sensor to bit distance
- Surveys referenced to where measurements made, not to bit
- Gamma referenced to where measurements made, not to bit

March 7

© 2001, Halliburton

Sensor to bit distance - DEP

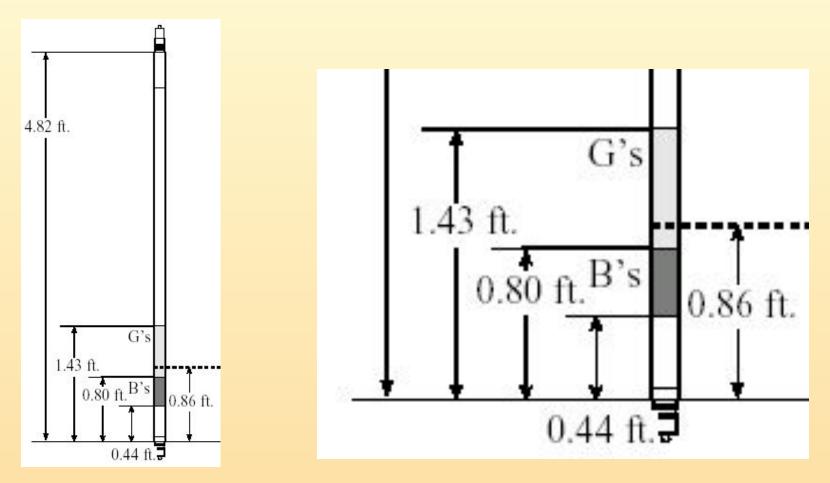


March

7

© 2001, Halliburton 43

Sensor Measure Point – DEP2

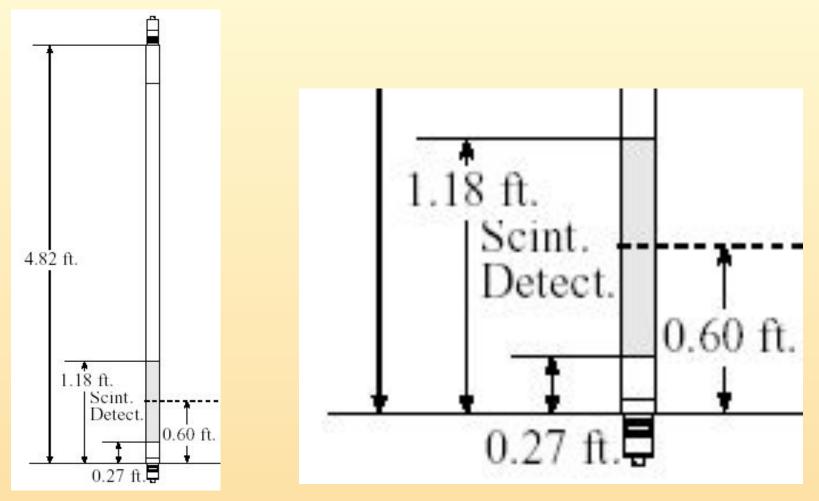


March

7

© 2001, Halliburton

Sensor Measure Point - PCD

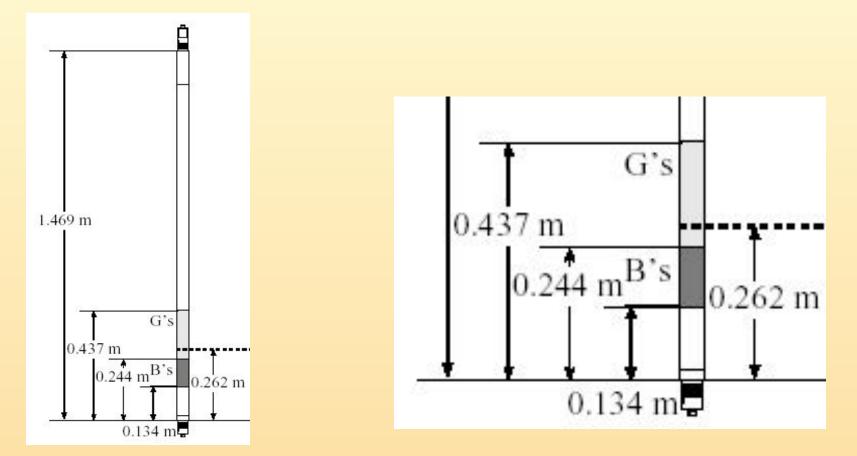


March

7

© 2001, Halliburton

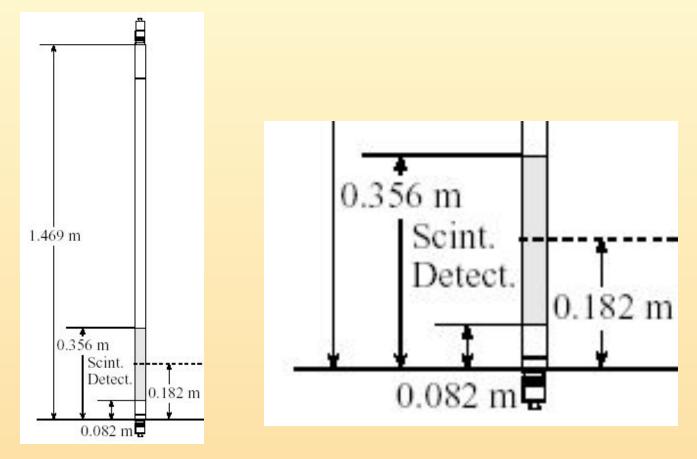
Sensor Measure Point - PCG



March

7

© 2001, Halliburton


Sensor Measure Point – PCD Metric Units

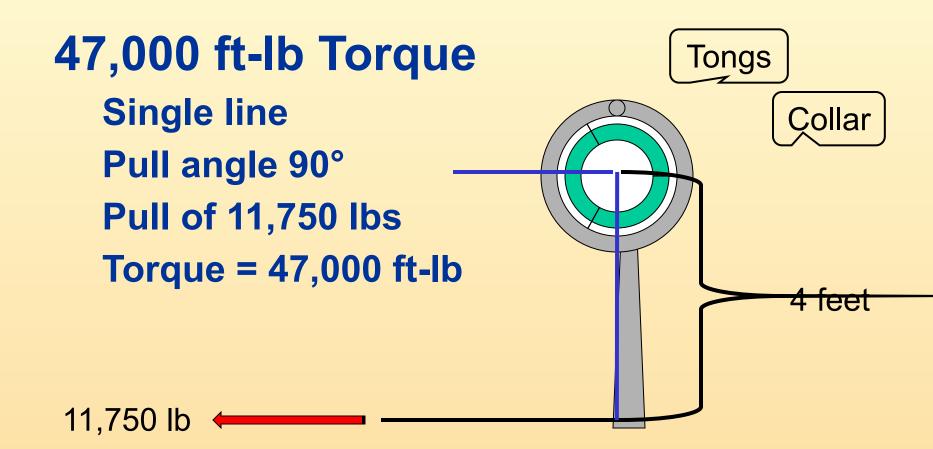
March

© 2001, Halliburton

Sensor Measure Point – PCG Metric Units

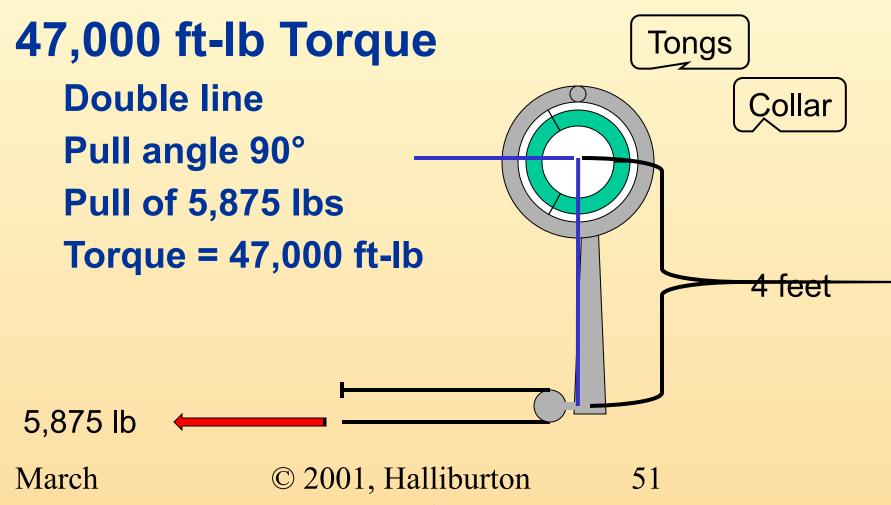
March

7

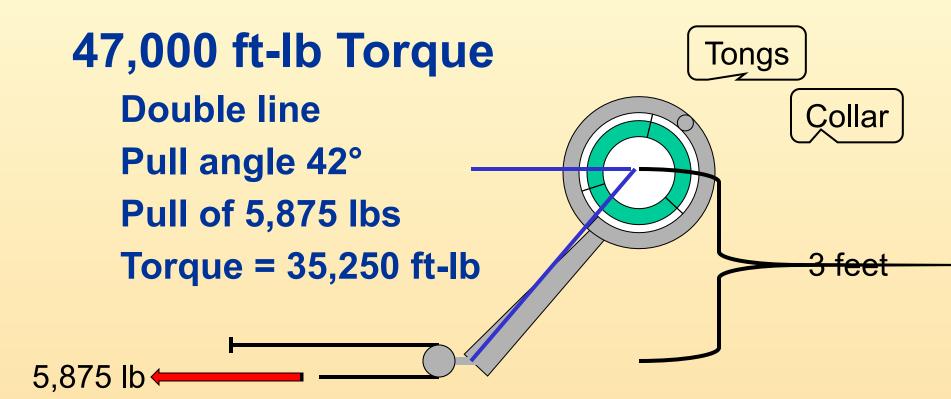

© 2001, Halliburton

Tool Joint Torque How do we apply it correctly? For example: 8 inch collar **6-5/8 API Regular Connection** 3-1/4 inch pin bore 47,000 ft-lb Torque 4 foot tongs

March


7

© 2001, Halliburton



March

© 2001, Halliburton



Energy Services Inc

March 7

© 2001, Halliburton

March 7

© 2001, Halliburton