
ICS-171:Notes 4: 1

Chapter 4: Informed Heuristic Search

ICS 171 Fall 2006

ICS-171:Notes 4: 2

Summary

• Heuristics and Optimal search strategies
– heuristics
– hill-climbing algorithms
– Best-First search
– A*: optimal search using heuristics
– Properties of A*

• admissibility,
• monotonicity,
• accuracy and dominance
• efficiency of A*

– Branch and Bound
– Iterative deepening A*
– Automatic generation of heuristics

ICS-171:Notes 4: 3

Problem: finding a Minimum Cost Path

• Previously we wanted an arbitrary path to a goal or best cost.
• Now, we want the minimum cost path to a goal G

– Cost of a path = sum of individual transitions along path
• Examples of path-cost:

– Navigation
• path-cost = distance to node in miles

– minimum => minimum time, least fuel

– VLSI Design
• path-cost = length of wires between chips

– minimum => least clock/signal delay

– 8-Puzzle
• path-cost = number of pieces moved

– minimum => least time to solve the puzzle

ICS-171:Notes 4: 4

Best-first search

• Idea: use an evaluation function f(n) for each node
– estimate of "desirability"

� Expand most desirable unexpanded node

• Implementation:
Order the nodes in fringe in decreasing order of
desirability

• Special cases:
– greedy best-first search
– A* search

ICS-171:Notes 4: 5

Heuristic functions

• 8-puzzle

• 8-queen

• Travelling salesperson

ICS-171:Notes 4: 6

Heuristic functions

• 8-puzzle
– W(n): number of misplaced tiles
– Manhatten distance
– Gaschnig’s

• 8-queen

• Travelling salesperson

ICS-171:Notes 4: 7

Heuristic functions

• 8-puzzle
– W(n): number of misplaced tiles
– Manhatten distance
– Gaschnig’s

• 8-queen
– Number of future feasible slots
– Min number of feasible slots in a row

• Travelling salesperson
– Minimum spanning tree
– Minimum assignment problem

ICS-171:Notes 4: 8

Best first (Greedy) search: f(n) = number of
misplaced tiles

ICS-171:Notes 4: 9

Romania with step costs in km

ICS-171:Notes 4: 10

Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic)
• = estimate of cost from n to goal

• e.g., hSLD(n) = straight-line distance from n to Bucharest

• Greedy best-first search expands the node that appears to be
closest to goal

ICS-171:Notes 4: 11

Greedy best-first search example

ICS-171:Notes 4: 12

Greedy best-first search example

ICS-171:Notes 4: 13

Greedy best-first search example

ICS-171:Notes 4: 14

Greedy best-first search example

ICS-171:Notes 4: 15

Problems with Greedy Search

• Not complete

• Get stuck on local minimas and plateaus,
• Irrevocable,
• Infinite loops
• Can we incorporate heuristics in systematic search?

ICS-171:Notes 4: 16

A* search

• Idea: avoid expanding paths that are already
expensive

• Evaluation function f(n) = g(n) + h(n)

• g(n) = cost so far to reach n

• h(n) = estimated cost from n to goal

• f(n) = estimated total cost of path through n to
goal

ICS-171:Notes 4: 17

A* search example

ICS-171:Notes 4: 18

A* search example

ICS-171:Notes 4: 19

A* search example

ICS-171:Notes 4: 20

A* search example

ICS-171:Notes 4: 21

A* search example

ICS-171:Notes 4: 22

A* search example

ICS-171:Notes 4: 23

A*- a special Best-first search

• Goal: find a minimum sum-cost path
• Notation:

– c(n,n’) - cost of arc (n,n’)
– g(n) = cost of current path from start to node n in the search tree.
– h(n) = estimate of the cheapest cost of a path from n to a goal.
– Special evaluation function: f = g+h

• f(n) estimates the cheapest cost solution path that goes through n.
– h*(n) is the true cheapest cost from n to a goal.
– g*(n) is the true shortest path from the start s, to n.

• If the heuristic function, h always underestimate the true cost
(h(n) is smaller than h*(n)), then A* is guaranteed to find an optimal
solution.

ICS-171:Notes 4: 24

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,
h(n) ≤ h*(n), where h*(n) is the true cost to reach
the goal state from n.

• An admissible heuristic never overestimates the
cost to reach the goal, i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual
road distance)

•

• Theorem: If h(n) is admissible, A* using
TREE-SEARCH is optimal

ICS-171:Notes 4: 25

ICS-171:Notes 4: 26

ICS-171:Notes 4: 27

A* on 8-puzzle with h(n) = w(n)

ICS-171:Notes 4: 28

Algorithm A* (with any h on search Graph)

• Input: a search graph problem with cost on the arcs
• Output: the minimal cost path from start node to a goal node.

– 1. Put the start node s on OPEN.
– 2. If OPEN is empty, exit with failure
– 3. Remove from OPEN and place on CLOSED a node n having

minimum f.
– 4. If n is a goal node exit successfully with a solution path obtained

by tracing back the pointers from n to s.
– 5. Otherwise, expand n generating its children and directing pointers

from each child node to n.
• For every child node n’ do

– evaluate h(n’) and compute f(n’) = g(n’) +h(n’)=
g(n)+c(n,n’)+h(n)

– If n’ is already on OPEN or CLOSED compare its new f with
the old f and attach the lowest f to n’.

– put n’ with its f value in the right order in OPEN
– 6. Go to step 2.

ICS-171:Notes 4: 29

S G

A B

D E

C

F

4.06.710.4

11.0

8.9
6.9

3.0

S G

A B

D E

C

F

2
1

2

5

4

2 4
3

5

ICS-171:Notes 4: 30

Example of A* Algorithm in action

S

A D

B D

C E E

B F

G

2 +10.4 = 12..4
5 + 8.9 = 13.9

3 + 6.7 = 9.7

7 + 4 = 11 8 + 6.9 = 14.9

4 + 8.9 = 12.9

6 + 6.9 = 12.9

11 + 6.7 = 17.7

10 + 3.0 = 13

13 + 0 = 13

Dead End

ICS-171:Notes 4: 31

Behavior of A* - Completeness

• Theorem (completeness for optimal solution) (HNL, 1968):
– If the heuristic function is admissible than A* finds an optimal

solution.

• Proof:
– 1. A* will expand only nodes whose f-values are less (or equal) to

the optimal cost path C* (f(n) less-or-equal c*).
– 2. The evaluation function of a goal node along an optimal path

equals C*.
• Lemma:

– Anytime before A* terminates there exists and OPEN node n’ on an
optimal path with f(n’) <= C*.

ICS-171:Notes 4: 32

ICS-171:Notes 4: 33

Consistent heuristics

• A heuristic is consistent if for every node n, every successor n' of
n generated by any action a,

h(n) ≤ c(n,a,n') + h(n')

• If h is consistent, we have

f(n') = g(n') + h(n')
 = g(n) + c(n,a,n') + h(n')
 ≥ g(n) + h(n)
 = f(n)

• i.e., f(n) is non-decreasing along any path.

• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

ICS-171:Notes 4: 34

Optimality of A* with consistent h

• A* expands nodes in order of increasing f value

• Gradually adds "f-contours" of nodes
• Contour i has all nodes with f=fi, where fi < fi+1

ICS-171:Notes 4: 35

Summary: Consistent (Monotone) Heuristics

• If in the search graph the heuristic function satisfies triangle inequality for every n
and its child node n’: h^(ni) less or equal h^(nj) + c(ni,nj)
–

• when h is monotone, the f values of nodes expanded by A* are never
decreasing.

• When A* selected n for expansion it already found the shortest path to it.
• When h is monotone every node is expanded once (if check for duplicates).
• Normally the heuristics we encounter are monotone

– the number of misplaced ties
– Manhattan distance
– air-line distance

ICS-171:Notes 4: 36

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ?
• h2(S) = ?

ICS-171:Notes 4: 37

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

ICS-171:Notes 4: 38

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible)
• then h2 dominates h1
• h2 is better for search

• Typical search costs (average number of nodes
expanded):

• d=12 IDS = 3,644,035 nodes
 A*(h1) = 227 nodes
 A*(h2) = 73 nodes

• d=24 IDS = too many nodes
 A*(h1) = 39,135 nodes
 A*(h2) = 1,641 nodes

ICS-171:Notes 4: 39

Complexity of A*

• A* is optimally efficient (Dechter and Pearl 1985):
– It can be shown that all algorithms that do not expand a node which

A* did expand (inside the contours) may miss an optimal solution
• A* worst-case time complexity:

– is exponential unless the heuristic function is very accurate
• If h is exact (h = h*)

– search focus only on optimal paths
• Main problem: space complexity is exponential
• Effective branching factor:

– logarithm of base (d+1) of average number of nodes expanded.

ICS-171:Notes 4: 40

Effectiveness of A* Search Algorithm

d IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

8 6384 39 25

12 364404 227 73

14 3473941 539 113

20 ------------7276 676

Average number of nodes expanded

Average over 100 randomly generated 8-puzzle problems
h1 = number of tiles in the wrong position
h2 = sum of Manhattan distances

ICS-171:Notes 4: 41

Properties of A*

• Complete? Yes (unless there are infinitely many nodes with f ≤ f(G)
)

• Time? Exponential

• Space? Keeps all nodes in memory

• Optimal? Yes

• A* expands all nodes having f(n) < C*
• A* expands some nodes having f(n) = C*
• A* expands no nodes having f(n) > C*

ICS-171:Notes 4: 42

Relationships among search algorithms

ICS-171:Notes 4: 43

Pseudocode for Branch and Bound Search
(An informed depth-first search)

Initialize: Let Q = {S}
While Q is not empty

pull Q1, the first element in Q
if Q1 is a goal compute the cost of the solution and update

 L <-- minimum between new cost and old cost
else

child_nodes = expand(Q1),
 <eliminate child_nodes which represent simple

loops>,
For each child node n do:

evaluate f(n). If f(n) is greater than L
discard n.

end-for
Put remaining child_nodes on top of queue in the

order of their evaluation function, f.

end
Continue

ICS-171:Notes 4: 44

Properties of Branch-and-Bound

• Not guaranteed to terminate unless has depth-bound
• Optimal:

– finds an optimal solution
• Time complexity: exponential
• Space complexity: linear

ICS-171:Notes 4: 45

Iterative Deepening A* (IDA*)
(combining Branch-and-Bound and A*)

• Initialize: f <-- the evaluation function of the start node
• until goal node is found

– Loop:
• Do Branch-and-bound with upper-bound L equal current

evaluation function
• Increment evaluation function to next contour level

– end
• continue
• Properties:

– Guarantee to find an optimal solution
– time: exponential, like A*
– space: linear, like B&B.

ICS-171:Notes 4: 46

ICS-171:Notes 4: 47

Inventing Heuristics automatically

• Examples of Heuristic Functions for A*
– the 8-puzzle problem

• the number of tiles in the wrong position
– is this admissible?

• the sum of distances of the tiles from their goal positions, where
distance is counted as the sum of vertical and horizontal tile
displacements (“Manhattan distance”)

– is this admissible?

– How can we invent admissible heuristics in general?
• look at “relaxed” problem where constraints are removed

– e.g.., we can move in straight lines between cities
– e.g.., we can move tiles independently of each other

ICS-171:Notes 4: 48

Inventing Heuristics Automatically (continued)

• How did we
– find h1 and h2 for the 8-puzzle?
– verify admissibility?
– prove that air-distance is admissible? MST admissible?

• Hypothetical answer:
– Heuristic are generated from relaxed problems
– Hypothesis: relaxed problems are easier to solve

• In relaxed models the search space has more operators, or more
directed arcs

• Example: 8 puzzle:
– A tile can be moved from A to B if A is adjacent to B and B is clear
– We can generate relaxed problems by removing one or more of the

conditions
• A tile can be moved from A to B if A is adjacent to B
• ...if B is blank
• A tile can be moved from A to B.

ICS-171:Notes 4: 49

Generating heuristics (continued)

• Example: TSP
• Finr a tour. A tour is:

– 1. A graph
– 2. Connected
– 3. Each node has degree 2.

• Eliminating 2 yields MST.

ICS-171:Notes 4: 50

Relaxed problems

• A problem with fewer restrictions on the actions is
called a relaxed problem

• The cost of an optimal solution to a relaxed
problem is an admissible heuristic for the original
problem

• If the rules of the 8-puzzle are relaxed so that a tile
can move anywhere, then h1(n) gives the shortest
solution

• If the rules are relaxed so that a tile can move to
any adjacent square, then h2(n) gives the shortest
solution

ICS-171:Notes 4: 51

ICS-171:Notes 4: 52

Automating Heuristic generation

• Use Strips representation:
• Operators:

– Pre-conditions, add-list, delete list
• 8-puzzle example:

– On(x,y), clear(y) adj(y,z) ,tiles x1,…,x8
• States: conjunction of predicates:

– On(x1,c1),on(x2,c2)….on(x8,c8),clear(c9)
• Move(x,c1,c2) (move tile x from location c1 to location c2)

– Pre-cond: on(x1.c1), clear(c2), adj(c1,c2)
– Add-list: on(x1,c2), clear(c1)
– Delete-list: on(x1,c1), clear(c2)

• Relaxation:
• 1. Remove from prec-dond: clear(c2), adj(c2,c3) 🡪 #misplaced tiles
• 2. Remove clear(c2) 🡪 manhatten distance
• 3. Remove adj(c2,c3) 🡪 h3, a new procedure that transfer to the

empty location a tile appearing there in the goal

ICS-171:Notes 4: 53

Heuristic generation

• The space of relaxations can be enriched by predicate refinements
• Adj(y,z) iff neigbour(y,z) and same-line(y,z)

• The main question: how to recognize a relaxed problem which is
easy.

• A proposal:
– A problem is easy if it can be solved optimally by agreedy algorithm

• Heuristics that are generated from relaxed models are monotone.

• Proof: h is true shortest path I relaxed model
– H(n) <=c’(n,n’)+h(n’)
– C’(n,n’) <=c(n,n’)
– 🡪 h(n) <= c(n,n’)+h(n’)

• Problem: not every relaxed problem is easy, often, a simpler
problem which is more constrained will provide a good
upper-bound.

ICS-171:Notes 4: 54

Improving Heuristics

• If we have several heuristics which are non dominating we can select
the max value.

• Reinforcement learning.

ICS-171:Notes 4: 55

Local search algorithms
• In many optimization problems, the path to the

goal is irrelevant; the goal state itself is the
solution

• State space = set of "complete" configurations
• Find configuration satisfying constraints, e.g.,

n-queens

• In such cases, we can use local search algorithms
• keep a single "current" state, try to improve it

• Constant space. Good for offline and online
search

ICS-171:Notes 4: 56

ICS-171:Notes 4: 57

Hill-climbing search

• "Like climbing Everest in thick fog with amnesia"

ICS-171:Notes 4: 58

Hill-climbing search

• Problem: depending on initial state, can get stuck in local maxima

ICS-171:Notes 4: 59

Hill-climbing search: 8-queens problem

• h = number of pairs of queens that are attacking each other, either directly or indirectly
• h = 17 for the above state

ICS-171:Notes 4: 60

Hill-climbing search: 8-queens problem

• A local minimum with h = 1

ICS-171:Notes 4: 61

Simulated annealing search

• Idea: escape local maxima by allowing some "bad" moves but gradually
decrease their frequency

ICS-171:Notes 4: 62

Properties of simulated annealing search

• One can prove: If T decreases slowly enough, then simulated annealing
search will find a global optimum with probability approaching 1

• Widely used in VLSI layout, airline scheduling, etc

