Chapter 4: Informed Heuristic Search

ICS 171 Fall 2006

ICS-171:Notes 4: 1

Summary

- Heuristics and Optimal search strategies
 - heuristics
 - hill-climbing algorithms
 - Best-First search
 - A*: optimal search using heuristics
 - Properties of A*
 - admissibility,
 - monotonicity,
 - accuracy and dominance
 - efficiency of A*
 - Branch and Bound
 - Iterative deepening A*
 - Automatic generation of heuristics

Problem: finding a Minimum Cost Path

- Previously we wanted an arbitrary path to a goal or best cost.
- Now, we want the minimum cost path to a goal G
 - Cost of a path = sum of individual transitions along path
- Examples of path-cost:
 - Navigation
 - path-cost = distance to node in miles
 - minimum => minimum time, least fuel
 - VLSI Design
 - path-cost = length of wires between chips
 - minimum => least clock/signal delay
 - 8-Puzzle
 - path-cost = number of pieces moved
 - minimum => least time to solve the puzzle

Best-first search

Idea: use an evaluation function f(n) for each node
 – estimate of "desirability"

Expand most desirable unexpanded node

Implementation: Order the nodes in fr

Order the nodes in fringe in decreasing order of desirability

Special cases:

- greedy best-first search
- A^{*} search

Heuristic functions

8-puzzle

• 8-queen

• Travelling salesperson

Heuristic functions

- 8-puzzle
 - W(n): number of misplaced tiles
 - Manhatten distance
 - Gaschnig's

• 8-queen

Travelling salesperson

Heuristic functions

• 8-puzzle

- W(n): number of misplaced tiles
- Manhatten distance
- Gaschnig's

8-queen

- Number of future feasible slots
- Min number of feasible slots in a row

Travelling salesperson

- Minimum spanning tree
- Minimum assignment problem

Best first (Greedy) search: f(n) = number of misplaced tiles

Romania with step costs in km

Greedy best-first search

- Evaluation function f(n) = h(n) (heuristic)
- = estimate of cost from *n* to goal
- e.g., *h*_{SLD}(*n*) = straight-line distance from *n* to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

ICS-171:Notes 4: 11

Problems with Greedy Search

- Not complete
- Get stuck on local minimas and plateaus,
- Irrevocable,
- Infinite loops
- Can we incorporate heuristics in systematic search?

A^{*} search

 Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

- g(n) = cost so far to reach n
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through n to goal

A*- a special Best-first search

- **Goal:** find a minimum sum-cost path
- Notation:
 - c(n,n') cost of arc (n,n')
 - -g(n) = cost of current path from start to node n in the search tree.
 - -h(n) = estimate of the cheapest cost of a path from n to a goal.
 - Special evaluation function: f = g+h
- **f(n) estimates** the cheapest cost solution path that goes through n.
 - h*(n) is the true cheapest cost from n to a goal.
 - $g^*(n)$ is the true shortest path from the start s, to n.
- If the heuristic function, h always underestimate the true cost (h(n) is smaller than h*(n)), then A* is guaranteed to find an optimal solution.

 A heuristic h(n) is admissible if for every node n, h(n) ≤ h^{*}(n), where h^{*}(n) is the true cost to reach the goal state from n.

 An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic

- Example: h_{SLD}(n) (never overestimates the actual road distance)
- Theorem: If h(n) is admissible, A^{*} using TREE-SEARCH is optimal

E.g., for the 8-puzzle:

 $h_1(n) =$ number of misplaced tiles $h_2(n) =$ total Manhattan distance (i.e., no. of squares from desired location of each tile)

Start State

Goal State

 $h_1($

E.g., for the 8-puzzle:

 $\frac{h_1(S)}{h_2(S)} = ?? 7$ $\frac{h_2(S)}{h_2(S)} = ?? 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14$

A* on 8-puzzle with h(n) = w(n)

ICS-171:Notes 4: 27

Algorithm A* (with any h on search Graph)

- **Input:** a search graph problem with cost on the arcs
- **Output:** the minimal cost path from start node to a goal node.
 - 1. Put the start node s on OPEN.
 - 2. If OPEN is empty, exit with failure
 - 3. Remove from OPEN and place on CLOSED a node n having minimum f.
 - 4. If n is a goal node exit successfully with a solution path obtained by tracing back the pointers from n to s.
 - 5. Otherwise, expand n generating its children and directing pointers from each child node to n.
 - For every child node n' do
 - evaluate h(n') and compute f(n') = g(n') +h(n')= g(n)+c(n,n')+h(n)
 - If n' is already on OPEN or CLOSED compare its new f with the old f and attach the lowest f to n'.
 - put n' with its f value in the right order in OPEN
 - 6. Go to step 2.

Example of A* Algorithm in action

ICS-171:Notes 4: 30

Behavior of A* - Completeness

- Theorem (completeness for optimal solution) (HNL, 1968):
 - If the heuristic function is admissible than A* finds an optimal solution.

- Proof:
 - 1. A* will expand only nodes whose f-values are less (or equal) to the optimal cost path C* (f(n) less-or-equal c*).
 - 2. The evaluation function of a goal node along an optimal path equals C*.
- Lemma:
 - Anytime before A* terminates there exists and OPEN node n' on an optimal path with f(n') <= C*.

Optimality of A^{*} (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

$$f(G_2) = g(G_2) \qquad \text{since } h(G_2) = 0$$

> $g(G_1) \qquad \text{since } G_2 \text{ is suboptimal}$
\ge f(n) \quad \text{since } h \text{ is admissible}

Since $f(G_2) > f(n)$, A^{*} will never select G_2 for expansion

Consistent heuristics

• A heuristic is **consistent** if for every node *n*, every successor *n*' of *n* generated by any action *a*,

 $h(n) \leq c(n,a,n') + h(n')$

• If *h* is consistent, we have

```
\begin{array}{ll} f(n') &= g(n') + h(n') \\ &= g(n) + c(n,a,n') + h(n') \\ &\geq g(n) + h(n) \\ &= f(n) \end{array}
```

- i.e., *f*(*n*) is non-decreasing along any path.
- Theorem: If *h(n)* is consistent, A* using GRAPH-SEARCH is optimal

Optimality of A^{*} with consistent h

• A^{*} expands nodes in order of increasing *f* value

- Gradually adds "f-contours" of nodes
- Contour *i* has all nodes with $f=f_{i}$, where $f_i < f_{i+1}$

Summary: Consistent (Monotone) Heuristics

 If in the search graph the heuristic function satisfies triangle inequality for every n and its child node n': h^(ni) less or equal h^(nj) + c(ni,nj)

- when h is monotone, the tvalues of house expanded by A* are never decreasing.
- When A* selected n for expansion it already found the shortest path to it.
- When h is monotone every node is expanded once (if check for duplicates).
- Normally the heuristics we encounter are monotone
 - the number of misplaced ties
 - Manhattan distance
 - air-line distance

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance
- (i.e., no. of squares from desired location of each tile)

• $h_4(S) = ?$ • $h_2(S) = ?$

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance
- (i.e., no. of squares from desired location of each tile)

Dominance

- If $h_2(n) \ge h_1(n)$ for all *n* (both admissible)
- then h, dominates h,
- *h*₂ is better for search
- Typical search costs (average number of nodes expanded):
- d=12 IDS = 3,644,035 nodes A^{*}(h₁) = 227 nodes A^{*}(h₂) = 73 nodes

 d=24 IDS = too many nodes
- d=24 IDS² = too many nodes A^{*}(h₁) = 39,135 nodes A^{*}(h₂) = 1,641 nodes

Complexity of A*

- A* is optimally efficient (Dechter and Pearl 1985):
 - It can be shown that all algorithms that do not expand a node which
 A* did expand (inside the contours) may miss an optimal solution
- A* worst-case time complexity:
 - is exponential unless the heuristic function is very accurate
- If h is exact (h = h*)
 - search focus only on optimal paths
- Main problem: space complexity is exponential
- Effective branching factor:
 - logarithm of base (d+1) of average number of nodes expanded.

Effectiveness of A* Search Algorithm

Average number of nodes expanded

d	IDS	A*(h1)			A*(h2)
2	10	6		6	
4	112	13		12	
8	6384		39		25
12	364404		227	,	73
14	347394	1	539)	113
20	7276				676

Average over 100 randomly generated 8-puzzle problems h1 = number of tiles in the wrong position h2 = sum of Manhattan distances

Properties of A*

- <u>Complete?</u> Yes (unless there are infinitely many nodes with f ≤ f(G)
)
- <u>Time?</u> Exponential
- Space? Keeps all nodes in memory
- Optimal? Yes
- A* expands all nodes having f(n) < C*
- A* expands some nodes having f(n) = C*
- A* expands no nodes having f(n) > C*

Relationships among search algorithms

ICS-171:Notes 4: 42

Pseudocode for Branch and Bound Search (An informed depth-first search)

```
Initialize: Let Q = \{S\}
While Q is not empty
    pull Q1, the first element in Q
    if Q1 is a goal compute the cost of the solution and update
            L <-- minimum between new cost and old cost
    else
          child nodes = expand(Q1),
                   <eliminate child nodes which represent simple
          loops>,
          For each child node n do:
               evaluate f(n). If f(n) is greater than L
discard n.
          end-for
          Put remaining child nodes on top of queue
                                                                 in the
order of their evaluation function, f.
```

end Continue

Properties of Branch-and-Bound

- Not guaranteed to terminate unless has depth-bound
- Optimal:
 - finds an optimal solution
- Time complexity: exponential
- Space complexity: linear

Iterative Deepening A* (IDA*) (combining Branch-and-Bound and A*)

- Initialize: f <--- the evaluation function of the start node
- until goal node is found
 - Loop:
 - Do Branch-and-bound with upper-bound L equal current evaluation function
 - Increment evaluation function to next contour level
 - end
- continue
- Properties:
 - Guarantee to find an optimal solution
 - time: exponential, like A*
 - space: linear, like B&B.

ICS-171:Notes 4: 46

Inventing Heuristics automatically

Examples of Heuristic Functions for A*

- the 8-puzzle problem
 - the number of tiles in the wrong position
 - is this admissible?
 - the sum of distances of the tiles from their goal positions, where distance is counted as the sum of vertical and horizontal tile displacements ("Manhattan distance")
 - is this admissible?
- How can we invent admissible heuristics in general?
 - look at "relaxed" problem where constraints are removed
 - e.g., we can move in straight lines between cities
 - e.g., we can move tiles independently of each other

Inventing Heuristics Automatically (continued)

- How did we
 - find h1 and h2 for the 8-puzzle?
 - verify admissibility?
 - prove that air-distance is admissible? MST admissible?
- Hypothetical answer:
 - Heuristic are generated from relaxed problems
 - Hypothesis: relaxed problems are easier to solve
- In relaxed models the search space has more operators, or more directed arcs
- Example: 8 puzzle:
 - A tile can be moved from A to B if A is adjacent to B and B is clear
 - We can generate relaxed problems by removing one or more of the conditions
 - A tile can be moved from A to B if A is adjacent to B
 - ...if B is blank
 - A tile can be moved from A to B.

Generating heuristics (continued)

- Example: TSP
- Finr a tour. A tour is:
 - 1. A graph
 - 2. Connected
 - 3. Each node has degree 2.
- Eliminating 2 yields MST.

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h₁(n) gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then h₂(n) gives the shortest solution

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O(n^2)$ and is a lower bound on the shortest (open) tour

Automating Heuristic generation

- Use Strips representation:
- Operators:
 - Pre-conditions, add-list, delete list
- 8-puzzle example:
 - On(x,y), clear(y) adj(y,z) ,tiles x1,...,x8
- States: conjunction of predicates:
 - On(x1,c1),on(x2,c2)....on(x8,c8),clear(c9)
- Move(x,c1,c2) (move tile x from location c1 to location c2)
 - Pre-cond: on(x1.c1), clear(c2), adj(c1,c2)
 - Add-list: on(x1,c2), clear(c1)
 - Delete-list: on(x1,c1), clear(c2)
- Relaxation:
- 1. Remove from prec-dond: clear(c2), adj(c2,c3) □ #misplaced tiles
- 2. Remove clear(c2)
 manhatten distance
- 3. Remove adj(c2,c3)
 h3, a new procedure that transfer to the empty location a tile appearing there in the goal

Heuristic generation

- The space of relaxations can be enriched by predicate refinements
- Adj(y,z) iff neigbour(y,z) and same-line(y,z)
- The main question: how to recognize a relaxed problem which is easy.
- A proposal:
 - A problem is easy if it can be solved optimally by agreedy algorithm
- Heuristics that are generated from relaxed models are monotone.
- Proof: h is true shortest path I relaxed model
 - H(n) <=c'(n,n')+h(n')
 - $C'(n,n') \le c(n,n')$
 - $\Box h(n) \leq c(n,n')+h(n')$
- Problem: not every relaxed problem is easy, often, a simpler problem which is more constrained will provide a good upper-bound.

Improving Heuristics

- If we have several heuristics which are non dominating we can select the max value.
- Reinforcement learning.

Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., n-queens
- In such cases, we can use local search algorithms
- keep a single "current" state, try to improve it
- Constant space. Good for offline and online search

Example: *n*-queens

Put n queens on an $n\times n$ board with no two queens on the same row, column, or diagonal

Move a queen to reduce number of conflicts

Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

Hill-climbing search

• Problem: depending on initial state, can get stuck in local maxima

Hill-climbing search: 8-queens problem

- *h* = number of pairs of queens that are attacking each other, either directly or indirectly
- *h* = 17 for the above state

Hill-climbing search: 8-queens problem

• A local minimum with h = 1

Simulated annealing search

 Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

Properties of simulated annealing search

- One can prove: If *T* decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1
- Widely used in VLSI layout, airline scheduling, etc