Chapter 4: Informed Heuristic Search

ICS 171 Fall 2006

ICS-171:Notes 4: 1

Summary

 Heuristics and Optimal search strategies

heuristics
hill-climbing algorithms
Best-First search
A*: optimal search using heuristics
Properties of A*
« admissibility,
* monotonicity,
« accuracy and dominance
« efficiency of A*
Branch and Bound
lterative deepening A*
Automatic generation of heuristics

ICS-171:Notes 4: 2

Problem: finding a Minimum Cost Path

 Previously we wanted an arbitrary path to a goal or best cost.
* Now, we want the minimum cost path to a goal G
— Cost of a path = sum of individual transitions along path
 Examples of path-cost:
— Navigation
« path-cost = distance to node in miles
— minimum => minimum time, least fuel

— VLSI Design
 path-cost = length of wires between chips
— minimum => |least clock/signal delay

— 8-Puzzle
« path-cost = number of pieces moved
— minimum => least time to solve the puzzle

ICS-171:Notes 4: 3

Best-first search

* |Idea: use an f(n) for each node
— estimate of "desirability”

0 Expand most desirable unexpanded node

* Implementation:

Order the nodes in fringe in decreasing order of
desirability

e Special cases:
— greedy best-first search
— A’ search

ICS-171:Notes 4: 4

Heuristic functions

e 8-puzzle

e 8-queen

 Travelling salesperson

ICS-171:Notes 4: 5

Heuristic functions

e 8-puzzle
— W(n): number of misplaced tiles
— Manhatten distance
— Gaschnig’s

e 8-queen

 Travelling salesperson

ICS-171:Notes 4: 6

Heuristic functions

e 8-puzzle
— W(n): number of misplaced tiles
— Manhatten distance
— Gaschnig’s

e 8-queen
— Number of future feasible slots
— Min number of feasible slots in a row

 Travelling salesperson

— Minimum spanning tree
— Minimum assignment problem

ICS-171:Notes 4: 7

Best first (Greedy) search: f(n) = number of
misplaced tile

4

Ty

To the goal

8
1
6
1

A
\ To more fruitless wandering

3
4

Timiscara

1

Romania with step costs in km

g9 Fagaras

80

Rimnicu Vikea
=

Pitesti
"

138

- Craiova

92

L] Vaslui

21

98

85 O ™} Hirsova
Urziceni
i 86

Bucharest
20

4 Giurgiu

Straight-line distance
© Bucharest

Arad
Bucharest
Craova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

ICS-171:Notes 4: 9

Greedy best-first search

Evaluation function f(n) = h(n) (' euristic)
= estimate of cost from n to goal

e.g., hg, ,(n) = straight-line distance from n to Bucharest

Greedy best-first search expands the node that to be
closest to goal

ICS-171:Notes 4: 10

Greedy best-first search example

ICS-171:Notes 4: 11

Greedy best-first search example

ICS-171:Notes 4: 12

Greedy best-first search example

ICS-171:Notes 4: 13

Greedy best-first search example

ICS-171:Notes 4: 14

Problems with Greedy Search

Not complete

Get stuck on local minimas and plateaus,
Irrevocable,

Infinite loops

Can we incorporate heuristics in systematic search?

ICS-171:Notes 4: 15

A" search

Idea: avoid expanding paths that are already
expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through n to
goal

ICS-171:Notes 4: 16

A" search example

366=0+366

ICS-171:Notes 4: 17

A" search example

’

393=140+253 447=118+329

ICS-171:Notes 4: 18

A" search example

< Sbiu_>

447=118+329

.ﬂ. S o@ (sl;a\dea - @ ; @

646=280+366 415=239+176 671=291+380 413=220+193

ICS-171:Notes 4: 19

A" search example

447=118+329

@

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253

ICS-171:Notes 4: 20

A" search example

#47=118+329

-@

646=280+366 : 671=291+380

-

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

ICS-171:Notes 4: 21

A" search example

4#47=118+329

646_2&'J+366 : 67 1-231+380

--

591=338+253 450=450+0 526-366+160 o T 553=300+253

PEaD Caon> i

418=418+0 615=455+160 607=414+193

ICS-171:Notes 4: 22

A*- a special Best-first search

Goal: find a minimum sum-cost path

Notation:
— ¢(n,n’) - cost of arc (n,n’)
— g(n) = cost of current path from start to node n in the search tree.
— h(n) = estimate of the cheapest cost of a path from n to a goal.
— Special evaluation function: f= g+h

f(n) estimates the cheapest cost solution path that goes through n.
— h*(n) is the true cheapest cost from n to a goal.
— g*(n) is the true shortest path from the start s, to n.

If the heuristic function, h always underestimate the true cost
(h(n) is smaller than h*(n)), then A* is guaranteed to find an optimal
solution.

ICS-171:Notes 4: 23

Admissible heuristics

A heuristic h(n) is if for every node n,

h(n) £ h'(n), where h'(n) is the cost to reach
the goal state from n.

An admissible heuristic the
cost to reach the goal, i.e., it is

Example: hg, (n) (never overestimates the actual
road distance)

Theorem: If h(n) is admissible, A" using
TREE-SEARCH is optimal ICS-171:Notes 4: 24

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4
9 6
8 3 1

h | (.S‘i —7?
ha(S) =77

Start State

1 2 3
4 5 6
7 8

Goal State

Chapter 4, Sections 1-2,

1

31

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
ho(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

hl[.S‘i —7? 7
hao(S) =77 4404+34+34+140424+1 = 14

Chapter 4, Sections 1-2,

A* on 8-puzzle with h(n) = w(n)

ICS-171:Notes 4: 27

Algorithm A* (with any h on search Graph)

* |Input: a search graph problem with cost on the arcs

e Output: the minimal cost path from start node to a goal node.
— 1. Put the start node s on OPEN.
— 2. If OPEN is empty, exit with failure

— 3. Remove from OPEN and place on CLOSED a node n having
minimum f.

— 4. If nis a goal node exit successfully with a solution path obtained
by tracing back the pointers from n to s.

— 5. Otherwise, expand n generating its children and directing pointers
from each child node to n.

* For every child node n’do
— evaluate h(n’) and compute f(n’) = g(n’) +h(n’)=
g(n)+c(n,n’)+h(n)
— If n’is already on OPEN or CLOSED compare its new f with
the old f and attach the lowest f to n’.
— put n’ with its f value in the right order in OPEN

— 6. Go to step 2.

ICS-171:Notes 4: 28

ICS-171:Notes 4: 29

Example of A* Algorithm in action

@ 5+8.9=13.9
3+6.7=97 E

@ ﬁ)ua.g:u.g
\ 8 +6.9=14.9
@ 6+6.9=12.9

Pead End ‘/ % 10 +3.0 = 13

1M1+6.7=17.7

13+0=13

2+104=12.4

7 +4="11

ICS-171:Notes 4: 30

Behavior of A* - Completeness

e Theorem (completeness for optimal solution) (HNL, 1968):

— If the heuristic function is admissible than A* finds an optimal
solution.

* Proof:
— 1. A* will expand only nodes whose f-values are less (or equal) to
the optimal cost path C* (f(n) less-or-equal c*).
— 2. The evaluation function of a goal node along an optimal path
equals C*.
e Lemma:

— Anytime before A* terminates there exists and OPEN node n’ on an
optimal path with f(n’) <= C*.

ICS-171:Notes 4: 31

Optimality of A* (standard proof)

Suppose some suboptimal goal (G5 has been generated and is in the queue.

Let n be an unexpanded node on a shortest path to an optimal goal (5;.

Start

I s S

n

@ G
f(G2) = g(Gs) since h(Gy) =0
> g(G;) since G5 is suboptimal
> f(n since h is admissible

Since f(G5) > f(n), A* will never select G for expansion

Chapter 4, Sections 1-2, 4

23

Consistent heuristics

A heuristic is if for every node n, every successor n’of
n generated by any action a,

h(n) < c(n,a,n’) + h(n’)

 |If his consistent, we have

f(n’) =g(n’) + h(n’)
= gd(n) *+ ¢(n,a,n’) + h(n’)
2 g(n) + h(n)
= f(n)

* i.e., f(n) is non-decreasing along any path.

 Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

ICS-171:Notes 4: 33

Optimality of A° with consistent h

A’ expands nodes in order of increasing fvalue

Gradually adds "f-contours™ of nodes

Contour i has all nodes with f=f, where f. <f.

i+1

ICS-171:Notes 4: 34

Summary: Consistent (Monotone) Heuristics

If in the search graph the heuristic function satisfies triangle inequality for every n
and its child node n’: hA(ni) less or equal h*(nj) + c(ni,nj)

when h is
decreasing.

When A* selected n for expansion it already found the shortest path to it.
When h is monotone every node is expanded once (if check for duplicates).
Normally the heuristics we encounter are monotone

— the number of misplaced ties

— Manhattan distance

— air-line distance

d by A* are never

ICS-171:Notes 4: 35

Admissible heuristics

E.g., for the 8-puzzle:

* h (n) = number of misplaced tiles
* h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

Start State Goal State

ICS-171:Notes 4: 36

Admissible heuristics

E.g., for the 8-puzzle:

* h (n) = number of misplaced tiles
* h,(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

8
3+1+2+2+2+3+3+2 = 18

Start State Goal State

ICS-171:Notes 4: 37

Dominance

If h,(n) 2 h_(n) for all n (both admissible)
then h h
h IS better for search

Typical search costs (average number of nodes
expanded):

d=12 IDS = 3,644,035 nodes
A (h,)= 227 nodes
A (h) =73 nodes

d=24 IDS = too many nodes
A (h.)=39,135 nodes
A (h) =1 641 nodes

ICS-171:Notes 4: 38

Complexity of A*

A* is optimally efficient (Dechter and Pearl 1985):

— It can be shown that all algorithms that do not expand a node which
A* did expand (inside the contours) may miss an optimal solution

A* worst-case time complexity:
— is exponential unless the heuristic function is very accurate
If h is exact (h = h*)
— search focus only on optimal paths
Main problem: space complexity is exponential
Effective branching factor:
— logarithm of base (d+1) of average number of nodes expanded.

ICS-171:Notes 4: 39

Effectiveness of A* Search Algorithm

Average number of nodes expanded

d IDS A*nh1) A*(h2)
2 10 6 6

4 112 13 12

8 6384 39 25

12 364404 227 /3

14 3473941 539 113

7)) J— 7276 676

Average over 100 randomly generated 8-puzzle problems
h1 = number of tiles in the wrong position
h2 = sum of Manhattan distances

ICS-171:Notes 4: 40

Properties of A*

Yes (unless there are infinitely many nodes with f < f(G)

Exponential
Keeps all nodes in memory

Yes

 A* expands all nodes having f(n) < C*
 A* expands some nodes having f(n) = C*
« A* expands no nodes having f(n) > C*

ICS-171:Notes 4: 41

Relationships among search algorithms

Depth first
(LIFO ordering)

/ = depth
(Breadth first)

h=0
(Uniform cost)

(Best-first search)

(Generic graph-search
algorithms)

ICS-171:Notes 4: 42

Pseudocode for Branch and Bound Search
(An informed depth-first search)

Initialize: Let Q = {S}
While Q is not empty
pull Q1, the first element in Q
if Q1 is a goal compute the cost of the solution and update
L <-- minimum between new cost and old cost
else
child nodes = expand(Q1),
<eliminate child nodes which represent simple
loops>,
For each child node n do:
evaluate f(n). If f(n) is greater than L
discard n.
end-for
Put remaining child nodes on top of queue in the
order of their evaluation function, f.

end
Continue

ICS-171:Notes 4: 43

Properties of Branch-and-Bound

Not guaranteed to terminate unless has depth-bound
Optimal:
— finds an optimal solution
Time complexity: exponential
Space complexity: linear

ICS-171:Notes 4: 44

Iterative Deepening A* (IDA¥)
(combining Branch-and-Bound and A¥)

Initialize: f <-- the evaluation function of the start node
until goal node is found
— Loop:
* Do Branch-and-bound with upper-bound L equal current
evaluation function
* Increment evaluation function to next contour level
— end
continue
Properties:
— Guarantee to find an optimal solution
— time: exponential, like A*
— space: linear, like B&B.

ICS-171:Notes 4: 45

ICS-171:Notes 4: 46

Inventing Heuristics automatically

« Examples of Heuristic Functions for A*
— the 8-puzzle problem
» the number of tiles in the wrong position
— is this admissible?

» the sum of distances of the tiles from their goal positions, where
distance is counted as the sum of vertical and horizontal tile
displacements (“Manhattan distance”)

— is this admissible?

— How can we invent admissible heuristics in general?
* look at “relaxed” problem where constraints are removed
— e.g.., we can move in straight lines between cities
— e.g.., we can move tiles independently of each other

ICS-171:Notes 4: 47

Inventing Heuristics Automatically (continued)

How did we

— find h1 and h2 for the 8-puzzle?

— verify admissibility?

— prove that air-distance is admissible? MST admissible?
Hypothetical answer:

— Heuristic are generated from relaxed problems

— Hypothesis: relaxed problems are easier to solve

In relaxed models the search space has more operators, or more
directed arcs

Example: 8 puzzle:
— Atile can be moved from A to B if A is adjacent to B and B is clear

— We can generate relaxed problems by removing one or more of the
conditions

» Atile can be moved from Ato B if Ais adjacent to B
 ...iIf B is blank
» Atile can be moved from A to B.

ICS-171:Notes 4: 48

Generating heuristics (continued)

e Example: TSP
 Finr atour. A tour is:

— 1. Agraph

— 2. Connected

— 3. Each node has degree 2.
 Eliminating 2 yields MST.

ICS-171:Notes 4: 49

Relaxed problems

A problem with fewer restrictions on the actions is
called a

The cost of an optimal solution to a relaxed
problem is an admissible heuristic for the original
problem

If the rules of the 8-puzzle are relaxed so that a tile
can move , then h_(n) gives the shortest
solution

If the rules are relaxed so that a tile can move to

then h,(n) gives the shortest
solution

ICS-171:Notes 4: 50

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n?)
and is a lower bound on the shortest (open) tour

Automating Heuristic generation

Use Strips representation:
Operators:
— Pre-conditions, add-list, delete list
8-puzzle example:
— On(x,y), clear(y) adj(y,z) ,tiles x1,...,x8
States: conjunction of predicates:
— On(x1,c1),0n(x2,c2)....on(x8,c8),clear(c9)
Move(x,c1,c2) (move tile x from location c1 to location c2)
— Pre-cond: on(x1.c1), clear(c2), adj(c1,c2)
— Add-list: on(x1,c2), clear(c1)
— Delete-list: on(x1,c1), clear(c2)
Relaxation:
1. Remove from prec-dond: clear(c2), adj(c2,c3) [#misplaced tiles
2. Remove clear(c2) [manhatten distance

3. Remove adj(c2,c3) [h3, a new procedure that transfer to the
empty location a tile appearing there in the goal

ICS-171:Notes 4: 52

Heuristic generation

The space of relaxations can be enriched by predicate refinements
Adj(y,z) iff neigbour(y,z) and same-line(y,z)

The main question: how to recognize a relaxed problem which is
easy.

A proposal:
— A problem is easy if it can be solved optimally by agreedy algorithm
Heuristics that are generated from relaxed models are monotone.

Proof: h is true shortest path | relaxed model

— H(n) <=c’(n,n’)+h(n’)

— C'(n,n’) <=c¢(n,n’)

— [h(n) <= c¢(n,n’)+h(n’)

Problem: not every relaxed problem is easy, often, a simpler

problem which is more constrained will provide a good
upper-bound.

ICS-171:Notes 4: 53

Improving Heuristics

» |f we have several heuristics which are non dominating we can select
the max value.

» Reinforcement learning.

ICS-171:Notes 4: 54

Local search algorithms

In many optimization problems, the to the
goal is irrelevant; the goal state itself is the
solution

State space = set of "complete" configurations

Find configuration satisfying constraints, e.g.,
n-queens

In such cases, we can use
keep a single "current” state, try to improve it

Constant space. Good for offline and online
search

ICS-171:Notes 4: 55

Example: n-queens

Put n queens on an n x n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts

W W

W W
W
_

> e =

F

Chapter 4, Sections 1-2, 4 38

Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

function HiLL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current <+ MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor < a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[curren]
current <— neighbor

ICS-171:Notes 4: 57

Hill-climbing search

 Problem: depending on initial state, can get stuck in local maxima

objective function global maxirmm

shoulder

\ local maxinm

/

"flat" local maximm

state SP&C c

= :Notes 4: 58

Hill-climbing search: 8-queens problem

h = number of pairs of queens that are attacking each other, either directly or indirectly
h = 17 for the above state

ICS-171:Notes 4: 59

Hill-climbing search: 8-queens problem

e Alocal minimum with h=1

ICS-171:Notes 4: 60

Simulated annealing search

* |dea: escape local maxima by allowing some "bad"” moves but
their frequency

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current <~ MAKE-NODE(INITIAL-STATE[problem])

for t<- 1to oc do
T < schedule[{]
if 7= 0 then return current
next<— a randomly selected successor of current
AE ¢+ VALUE[next] - VALUE[current]
if AE > 0 then current < next

else current < next only with probability e® #/7

ICS-171:Notes 4: 61

Properties of simulated annealing search

 One can prove: If T decreases slowly enough, then simulated annealing
search will find a global optimum with probability approaching 1

 Widely used in VLSI layout, airline scheduling, etc

ICS-171:Notes 4: 62

