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Chapter 4: Informed Heuristic Search

ICS 171 Fall 2006
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Summary

• Heuristics and Optimal search strategies
– heuristics
– hill-climbing algorithms
– Best-First search
– A*: optimal search using heuristics
– Properties of A*

• admissibility,
• monotonicity,
• accuracy and dominance
• efficiency of A*

– Branch and Bound
– Iterative deepening A*
– Automatic generation of heuristics



ICS-171:Notes 4: 3

Problem: finding a Minimum Cost Path

• Previously we wanted an arbitrary path to a goal or best cost.
• Now, we want the minimum cost path to a goal G

– Cost of a path = sum of individual transitions along path
• Examples of path-cost:

– Navigation
•  path-cost = distance to node in miles 

– minimum => minimum time, least fuel 

– VLSI Design
• path-cost = length of wires between chips

– minimum => least clock/signal delay 

– 8-Puzzle
• path-cost = number of pieces moved

– minimum => least time to solve the puzzle
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Best-first search

• Idea: use an evaluation function f(n) for each node
– estimate of "desirability"

� Expand most desirable unexpanded node

• Implementation:
Order the nodes in fringe in decreasing order of 
desirability

• Special cases:
– greedy best-first search
– A* search
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Heuristic functions

• 8-puzzle

• 8-queen

• Travelling salesperson
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Heuristic functions

• 8-puzzle
– W(n): number of misplaced tiles
– Manhatten distance
– Gaschnig’s

• 8-queen

• Travelling salesperson
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Heuristic functions

• 8-puzzle
– W(n): number of misplaced tiles
– Manhatten distance
– Gaschnig’s

• 8-queen
– Number of future feasible slots
– Min number of feasible slots in a row

• Travelling salesperson
– Minimum spanning tree
– Minimum assignment  problem
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Best first (Greedy) search: f(n) = number of 
misplaced tiles
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Romania with step costs in km
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Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic)
• = estimate of cost from n to goal

• e.g., hSLD(n) = straight-line distance from n to Bucharest

• Greedy best-first search expands the node that appears to be 
closest to goal
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Greedy best-first search example
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Greedy best-first search example
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Greedy best-first search example
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Greedy best-first search example
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Problems with Greedy Search

• Not complete 

• Get stuck on local minimas and plateaus, 
• Irrevocable, 
• Infinite loops
• Can we incorporate heuristics in systematic search?
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A* search

• Idea: avoid expanding paths that are already 
expensive

• Evaluation function f(n) = g(n) + h(n)

• g(n) = cost so far to reach n

• h(n) = estimated cost from n to goal

• f(n) = estimated total cost of path through n to 
goal
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A* search example
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A* search example
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A* search example
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A* search example
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A* search example
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A* search example
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A*- a special Best-first search

• Goal: find a minimum sum-cost path
• Notation:

– c(n,n’) - cost of arc (n,n’)
– g(n) = cost of current path from start to  node n in the search tree.
– h(n)  = estimate of the cheapest cost of a path from n to  a goal. 
– Special evaluation function:   f = g+h

• f(n) estimates the cheapest cost solution path that goes through n.
– h*(n) is the true cheapest cost from  n to a goal.
– g*(n) is the true shortest path from the start s, to  n. 

• If the heuristic function, h  always underestimate the  true cost 
(h(n) is smaller than h*(n)), then A* is guaranteed to find an optimal 
solution.
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Admissible heuristics

• A heuristic h(n) is admissible if for every node n,
h(n) ≤ h*(n), where h*(n) is the true cost to reach 
the goal state from n.

• An admissible heuristic never overestimates the 
cost to reach the goal, i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual 
road distance)

•

• Theorem: If h(n) is admissible, A* using 
TREE-SEARCH is optimal
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A* on 8-puzzle with h(n) = w(n)
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Algorithm A* (with any h on search Graph)

• Input: a search graph problem with cost on the arcs
• Output: the minimal cost path from start node to a goal node.

– 1. Put the start node s on OPEN.
– 2. If OPEN is empty, exit with failure
– 3. Remove from OPEN and place on CLOSED a node n having 

minimum f.
– 4. If n is a goal node exit successfully with a solution path obtained 

by tracing back the pointers from n to s.
– 5. Otherwise, expand n generating its children and directing pointers 

from each child node to n.
• For every child node  n’ do

– evaluate  h(n’) and compute f(n’) = g(n’) +h(n’)= 
g(n)+c(n,n’)+h(n)

– If n’ is already on OPEN or CLOSED compare its new f with 
the old f and attach the lowest f to n’.

– put n’ with its  f value in the right order in OPEN
– 6. Go to step 2.
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Example of A* Algorithm in action

S

A D

B D

C E E

B F

G

2 +10.4 = 12..4
5 + 8.9 = 13.9

3 + 6.7 = 9.7

7 + 4 = 11 8 + 6.9 = 14.9

4 + 8.9 = 12.9

6 + 6.9 = 12.9

11 + 6.7 = 17.7

10 + 3.0 = 13

13 + 0 = 13

Dead End
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Behavior of A* -  Completeness

• Theorem (completeness for optimal solution)  (HNL, 1968): 
– If the heuristic function is admissible than A* finds an optimal 

solution.

• Proof:  
– 1. A* will expand only nodes whose f-values are less (or equal)  to  

the optimal cost path  C* (f(n)  less-or-equal c*).
–  2. The evaluation function of  a goal node along an optimal path 

equals  C*. 
• Lemma:

– Anytime before A* terminates there exists and OPEN node n’ on an 
optimal path with f(n’) <= C*.
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Consistent heuristics

• A heuristic is consistent if for every node n, every successor n' of 
n generated by any action a, 
  

h(n) ≤ c(n,a,n') + h(n')

• If h is consistent, we have

f(n') = g(n') + h(n') 
      = g(n) + c(n,a,n') + h(n') 
      ≥ g(n) + h(n) 
      = f(n)

• i.e., f(n) is non-decreasing along any path.

• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal
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Optimality of A*   with consistent h

• A* expands nodes in order of increasing f value

• Gradually adds "f-contours" of nodes 
• Contour i has all nodes with f=fi, where fi < fi+1
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Summary: Consistent (Monotone) Heuristics

• If in the search graph the heuristic function satisfies triangle inequality for every n 
and its child node n’: h^(ni)  less or equal h^(nj) + c(ni,nj)
–   

• when h is monotone, the f values  of nodes expanded by A* are never 
decreasing.

• When A* selected n for expansion it already found the shortest path to it.
• When h is monotone every node is expanded once (if check for duplicates).
• Normally the heuristics we encounter are monotone

– the number of misplaced ties
– Manhattan distance
– air-line distance
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Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 
• h2(S) = ? 
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Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18 
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Dominance

• If h2(n) ≥ h1(n) for all n (both admissible)
• then h2 dominates h1 
• h2 is better for search

• Typical search costs (average number of nodes 
expanded):

• d=12 IDS = 3,644,035 nodes
          A*(h1) = 227 nodes 
          A*(h2) = 73 nodes 

• d=24 IDS = too many nodes
          A*(h1) = 39,135 nodes 
          A*(h2) = 1,641 nodes 
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Complexity of A*

• A* is optimally efficient  (Dechter and Pearl 1985):
– It can be shown that all algorithms that do not expand a node which 

A* did expand  (inside the contours) may miss an optimal solution
• A* worst-case time complexity:

–  is exponential unless the heuristic function is very accurate
• If h is exact (h = h*) 

– search focus only on optimal paths
• Main problem: space complexity is exponential
• Effective branching factor:

– logarithm of base  (d+1) of average number of nodes expanded.
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Effectiveness of A* Search Algorithm

d IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

8 6384 39 25

12 364404 227 73

14 3473941 539 113

20 ------------7276 676

Average number of nodes expanded

Average over 100 randomly generated 8-puzzle problems
h1 = number of tiles in the wrong position
h2 = sum of Manhattan distances
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Properties of A*

• Complete? Yes (unless there are infinitely many nodes with f ≤ f(G) 
)

• Time? Exponential

• Space? Keeps all nodes in memory

• Optimal? Yes

• A* expands all nodes having f(n) < C*
• A* expands some nodes having f(n) = C*
• A* expands no nodes having f(n) > C*
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Relationships among search algorithms
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Pseudocode for Branch and Bound Search
(An informed depth-first search)

Initialize: Let Q = {S}
While Q is not empty

pull Q1, the first element in Q
if Q1 is a goal compute the cost of the solution and update

                    L <-- minimum between new cost and old cost
else

child_nodes = expand(Q1),
                               <eliminate child_nodes which represent simple                 

loops>,
For each child node n do:

evaluate f(n).  If f(n) is greater than L 
discard n. 

end-for
Put remaining child_nodes on top of queue  in the 

order of their evaluation function, f. 

end 
Continue
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Properties of Branch-and-Bound

• Not guaranteed to terminate unless has depth-bound
• Optimal: 

– finds an optimal solution
• Time complexity: exponential
• Space complexity: linear
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Iterative Deepening A* (IDA*)
(combining Branch-and-Bound and A*)

• Initialize: f <-- the evaluation function of the start node
• until goal node is found

– Loop:
• Do Branch-and-bound with upper-bound L equal current 

evaluation function
• Increment evaluation function to next contour level

– end
• continue
• Properties:

– Guarantee to find an optimal solution
– time: exponential, like A*
– space: linear, like B&B.
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Inventing Heuristics automatically

• Examples of Heuristic Functions for A*
– the 8-puzzle problem

• the number of tiles in the wrong position
– is this admissible?

• the sum of distances of the tiles from their goal positions, where 
distance is counted as the sum of vertical and horizontal tile 
displacements (“Manhattan distance”)

– is this admissible?

– How can we invent admissible heuristics in general?
• look at “relaxed” problem where constraints are removed

– e.g.., we can move in straight lines between cities
– e.g.., we can move tiles independently of each other
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Inventing Heuristics Automatically (continued)

• How did we 
– find h1 and h2 for the 8-puzzle?
– verify admissibility?
– prove that air-distance is admissible? MST admissible?

• Hypothetical answer: 
– Heuristic are generated from relaxed problems
– Hypothesis: relaxed problems are easier to solve

• In relaxed models  the search space has more operators, or more 
directed arcs

• Example: 8 puzzle:
– A tile can be moved from A to B if A is adjacent to B and B is clear
– We can generate relaxed problems by removing one or more of the 

conditions
• A tile can be moved from A to B if A is adjacent to B
• ...if B is blank
• A tile can be moved from A to B.
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Generating heuristics (continued)

• Example: TSP
• Finr a tour. A tour is:

– 1. A graph
– 2. Connected
– 3. Each node has degree 2.

• Eliminating 2 yields MST.
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Relaxed problems

• A problem with fewer restrictions on the actions is 
called a relaxed problem

• The cost of an optimal solution to a relaxed 
problem is an admissible heuristic for the original 
problem

• If the rules of the 8-puzzle are relaxed so that a tile 
can move anywhere, then h1(n) gives the shortest 
solution

• If the rules are relaxed so that a tile can move to 
any adjacent square, then h2(n) gives the shortest 
solution
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Automating Heuristic generation

• Use Strips representation:
• Operators:

– Pre-conditions, add-list, delete list
• 8-puzzle example:

– On(x,y), clear(y) adj(y,z) ,tiles x1,…,x8
• States: conjunction of predicates:

– On(x1,c1),on(x2,c2)….on(x8,c8),clear(c9)
• Move(x,c1,c2) (move tile x from location c1 to location c2)

– Pre-cond:  on(x1.c1), clear(c2), adj(c1,c2)
– Add-list: on(x1,c2), clear(c1)
– Delete-list: on(x1,c1), clear(c2)

• Relaxation:
• 1. Remove from prec-dond: clear(c2), adj(c2,c3) 🡪 #misplaced tiles
• 2. Remove clear(c2) 🡪 manhatten distance
• 3. Remove adj(c2,c3) 🡪 h3, a new procedure that transfer to the 

empty location a tile appearing there in the goal
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Heuristic generation

• The space of relaxations can be enriched by predicate refinements
• Adj(y,z)  iff neigbour(y,z) and same-line(y,z)

• The main question: how to recognize a relaxed problem which is 
easy.

• A proposal:
– A problem is easy if it can be solved optimally by agreedy algorithm

• Heuristics that are generated from relaxed models are monotone.

• Proof: h is true shortest path I relaxed model
– H(n) <=c’(n,n’)+h(n’)
– C’(n,n’) <=c(n,n’)
– 🡪 h(n) <= c(n,n’)+h(n’)

• Problem: not every relaxed problem is easy, often, a simpler 
problem which is more constrained will provide a good 
upper-bound.
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Improving Heuristics

• If we have several heuristics which  are non dominating  we can select 
the max value.

• Reinforcement learning.
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Local search algorithms
• In many optimization problems, the path to the 

goal is irrelevant; the goal state itself is the 
solution

• State space = set of "complete" configurations
• Find configuration satisfying constraints, e.g., 

n-queens

• In such cases, we can use local search algorithms
• keep a single "current" state, try to improve it

• Constant space. Good for offline and online 
search
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Hill-climbing search

• "Like climbing Everest in thick fog with amnesia"
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Hill-climbing search

• Problem: depending on initial state, can get stuck in local maxima
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Hill-climbing search: 8-queens problem

• h = number of pairs of queens that are attacking each other, either directly or indirectly 
• h = 17 for the above state
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Hill-climbing search: 8-queens problem

• A local minimum with h = 1
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Simulated annealing search

• Idea: escape local maxima by allowing some "bad" moves but gradually 
decrease their frequency
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Properties of simulated annealing search

• One can prove: If T decreases slowly enough, then simulated annealing 
search will find a global optimum with probability approaching 1

• Widely used in VLSI layout, airline scheduling, etc


