

Код-система знаков для представления информации.

Кодирование информации – переход от одной формы представления информации к другой, более удобной для хранения.

Декодирование — процесс обратный кодированию. Существуют три основных вида кодирования текста:

графический

числовой

символьный

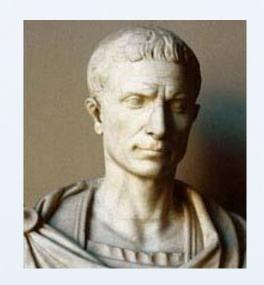
Информация, выраженная с помощью естественных и формальных языков в письменной форме, называется текстовой информацией

ADEKONLAP HEBOKUÜ (1721-1763)

Александр Ярославич Невский - князя Ярослава Всеволодовича.

С 1230 г. получил в княжение Новгород Великий. Вскоре на Русь пришли татары. Озера и болота остановили их и заставили повернуть, не дойдя до Новгорода, но нельзя было поручиться за его свободу в будущем.

Перед молодым кня зем возникала и другая, более бли экая и более серьезная опасность со стороны шведов, ливонцев и Литвы. Борьба с ливонцами и со шведами была, по сути дела, борьбой православного Востока с католическим Западом. В 1237 г. силы ливонцев — тевтонского ордена и меченосцев — объединились против русских. Александр, сыграв в 1239 г. свадьбу с Александрой, дочерью Брячи слава Полоцкого, приступил к укреплению западной границы своей области по реке Шелони.


Виды кодирования текста:

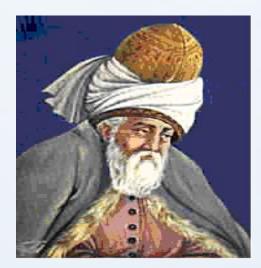
Сурдожесты – язык жестов, используемый людьми с нарушениями слуха.

Криптография — это тайнопись, система изменения письма с целью сделать текст непонятным для непросвещенных лиц.

Азбука Морзэ или неравномерный телеграфный код, в котором каждая буква или знак представляет своей комбинацией точек и тире.

Код Цезаря

Замени каждую букву шифруемого текста на другую путем смещения в алфавите от исходной буквы на фиксированное количество символов!


Закодируем БАИТсместим на 2 символа вправо

Получим: ГВЛФ

Юлий Цезарь (І век до н.э.)

АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦ<mark>ЯШ</mark> ЩЪЫЪЭЮЯ1

Задание:

Руми 1207-1273

Расшифруйте фразу персидского поэта Джалаледдина Руми «Krhycm eorkr фесл тцфхя фзужщз ФХГРЗХ ӨОГКСП», закодированную с помощью шифра Цезаря. Известно, что каждая буква исходного текста заменяется третьей после нее буквой.

АБВГДЕЁЖЗИЙКЛМНОПРСТУ ФХЦЧШЩЪЫЬЭЮЯ

Кодирование символов

Текстовый

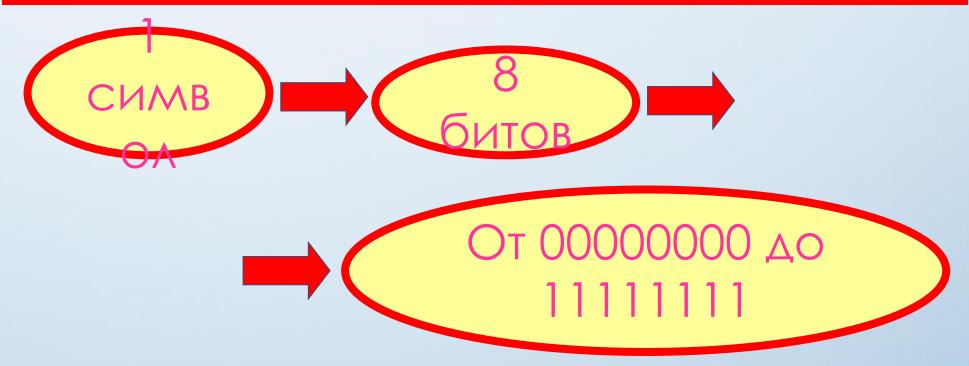
• на экране (СИМВОЛЫ)

• В ПОМЯТИ — ДВОИЧНЫЕ

1000001 ₂	1000010 ₂	10000112	1000100 ₂
65	66	67	68

В файле хранятся не изображения символов, a

их числовые коды в двоичной системе!


Двоичное кодирование текстовой информации

Для кодирования 1 символа используется

1 байт информации.

При обработке текстовой информации в компьютере каждый символ представляется двоичным кодом

Присвоение знаку конкретного двоичного кода - это вопрос соглашения, которое фиксируется в кодовой таблице

Кодовая таблица ASCII

American Standard Code for Information Interchange

sp	!		#	\$	%	&	1	()	*	+		-		1
0	1 1	2	35	4	5	6 54	7	8	9	42	43	44 <	45 =	46 >	?
48 @ 64	A 65	80 86	C 67	D 68	E 69	F 10	G	56 H 12	13	J 74	K 15	60 L	61 M 17	62 N 18	0
P ⊗	Q 81	R	S	T 84	U	V 86	W 87	×	Y 83	Z 30	91	32]	^ 34	95
56	a 57	b ss	C 55	d 100	e 101	f 102	g 100	h 104	105	j 106	k 101	100	m 103	n 110	0
p tt2	q	r 114	S 15	t 116	u 117	V 188	W 119	X 120	y 121	Z 122	123	124	125	126	

коды от 0 до 32

функционал ьные клавиши

коды от 33 до 127 буквы английского алфавита, знаки математических операций, знаки препинаний

8-битные кодировки (1 байт на символ)

0 1	127	128		254	255
	таблица ASCII (международная)		расширение (национальный алф	авит	·)

ASCII = American Standard Code for Information Interchange

```
0-31 управляющие символы:
```

```
7 – звонок, 10 – новая строка, 13 – возврат каретки, 27 – Esc.
```

32 пробел

знаки препинания: . , : ; ! ?

специальные знаки: $+ - * / () {} {}$

48-57 цифры 0..9

65-90 заглавные латинские буквы А-Х

97-122 строчные латинские буквы а-х

Кодовая страница (расширенная таблица ASCII)

для русского языка:

СР-866 для системы MS DOS

CP-1251 для системы Windows (Интернет)

КОИ8-Р для системы *UNIX* (Интернет)

Таблицы кодировки русскоязычных символов

КОИ-8

-	123	T 130	7	L 132	133	134	1 835	T 136	137	+	139	140	161	142	143
200000			ſ	•	•	7	~	<	2	nbsp	J	0	2	•	÷
=	145	146 F	147 ë	\$48 IT	143 [F	150 7	151 TI	152	153 E	154 IL	155 [L	156 H	157	158	159 -
960	161	962	963 Ë	964	4	166 T	967 TT	160 7F	163 <u>L</u>	110	正	# +	#	114	(D)
176	177 a	6	173 Ц	180	#81 E	182 ф	183 F	184 X	185 M	186 Й	187 K	188	189 M	190 H	191
192	193	194	195	196	197	198	199	200	201	505	203	204	205	206	207
П 208	Я 203	P 210	C 2H	T 212	y 213	Ж 214	B 215	b 216	bl 217	3 218	213	3 220	Щ 221	222	b 223
1O 224	A 225	5 226	Ц	Д	E 229	Ф 230	Г 231	X 232	И 233	Й 234	K 235	Л 236	M 237	H 238	0 239
П	Я	P	C	T	У	ж	В	Ь	Ы	3	Ш	Э	Щ	Ч	Ъ
240	241	242	243	244	245	246	247	248	243	250	251	252	253	254	255

ISO

	1			1.						اً الله	. [L
128	123	130	131	132	133	134	135	136	137	138	139	140	141	142	143
1	1		1		L	1	I	1	1	1		1	1		1
144	145	146	147	148	143	150	151	152	153	154	155	156	157	158	159
nbsp 160	Ë 161	Ъ	ŕ	€	S 165	166	Ï 167	J 168	Љ 163	H 170	Ћ 171	K 172	shy 173	ў 174	Ų 175
A 176	Б 177	B 178	Γ 179	Д	E 181	Ж	3	И 184	Й 185	K 186	Л 187	M 188	H 189	0	П 191
Р	С	Т	У	Ф	Х	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я
192	193	194	195	136	197	198	199	200	201	202	203	204	205	206	207
a 208	б 209	B 210	Г 211	Д 212	e 213	Ж 214	3 215	И 216	Й 217	K 218	л 213	M 220	H 221	O 222	П 223
p	C 225	T 226	y 227	ф 228	X 229	Ц 230	4 231	332	3 33	ъ 234	Ы 235	b 236	3 237	Ю 238	Я 239
№ 240	ë 241	ħ	ŕ 243	€ 244	S 245	i 246	ï 247	j 248	љ 243	њ 250	ħ 251	K 252	§ 253	ў 254	Ų 255

MAC

Α	Б	В	Г	Д	Ε	ж	3	И	Й	K	Л	М	Н	0	П
128	123	130	131	132	133	134	135	136	137	138	139	140	141	142	143
Р	C	T	У	Ф	X	Ц	Ч	Ш	Щ	Ъ	ы	Ь	Э	Ю	Я
144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
Ŧ	•	ьì	£	§	•	¶	ы́	®	0	TM	Á	á	è	à	è
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
Ê	±	< <	2	á	μ	г	á	Ю	ю́	я́	я́	É	é	й	ò
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
à	ю̀	-	7	f	~	Δ	«	>>		nbsp	ó	ó	Й	й	À
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
208	209	210	211	212	213	÷ 214	215	ý 216	Ы 217	ý 218	ý 219	Nº 220	Ë 221	ë 222	Я 223
a 224	б 225	B 226	Г 227	Д 228	e 223	ж 230	3 231	И 232	Й 233	K 234	л 235	M 236	H 237	O 238	П 239
224	223	220	221	2018/20	223	230	231	202	233	234	235	230	231	230	777775
P	C	T	У	ф	×	ц	ч	ш	щ	ъ	ы	ь	3	Ю	H
240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

CP1251

Á	à	,	è	- ,,		ŧ	‡	€	‰	É	<	ѝ	Й	ó	ý
128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
á	•		"	"	•	-	-	è	тм	é	>	ò	й	ó	ý
144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
nbsp	ý	Ы	á	Ħ	ы	-1	§	Ë	0	Ю́	«		shy	®	я́
160	161	162	163	164	165	166	167	168	163	170	171	172	173	174	175
0	±	ы́	á	•	μ	¶	•	ë	Nº	ю́	>>	à	ю̀	À	Ŕ
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
Α	Б	В	Г	Д	Ε	ж	3	И	Й	K	Л	М	Н	0	П
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
Р	С	T	У	Ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я
208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
a 224	б 225	B 226	Г 227	Д 228	e 223	ж 230	3 231	И 232	Й 233	K 234	л 235	M 236	H 237	0 238	П 239
The same of	100	14.076	1020	20.00	Tall Co	100	1000	3400	77772	1400	1000	1999	1966		142.07
P	C	T	У	ф	X	ц	Ч	Ш	Щ	ъ	ы	ь	3	Ю	Я
240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

Другие кодировочные таблицы для кодирования русских си<u>мволов</u>

КОИ8

CP1251

• CP866

Mac

· ISO

Сло	Слово ЭВМ							
кодируется:								
КОИ-8	252 247 237							
CP1251	221 194 204							
CP866	157 130 140							
Mac	157 130 140							
ISO	205 178 188							

8-битные кодировки (1 байт на символ)

- 1 байт на символ файлы небольшого размера!
 - просто обрабатывать в программах
- нельзя использовать символы разных кодовых страниц одновременно (русские и французские буквы, и т.п.)
 - неясно, в какой кодировке текст (перебор вариантов!)
 - для каждой кодировки нужен свой шрифт (изображения символов)

Кодировка Unicode

Идея: объединить все символы в одну таблицу!

Юникод включает практически все современные письменности, в том числе: арабскую, армянскую, бенгальскую, бирманскую, греческую, грузинскую, деванагари, иврит, кириллицу, коптскую, кхмерскую, латинскую, тамильскую, хангыль, хань (Китай, Япония, Корея), чероки, эфиопскую, японскую (катакана, хирагана, кандзи) и другие.

1 символ - 2 байта (16 бит),

которыми можно

653536 AMPARES WOBB

 $N=2^{16}=65536$

Таблица 3.2. Десятичные коды некоторых символов в различных кодировках

Символ	Windows	MS-DOS	кои-8	Мас	ISO	Unicode
А	192	128	225	128	176	1040
В	194	130	247	130	178	1042
М	204	140	237	140	188	1052
Э	221	157	252	157	205	1069
Я	255	239	241	223	239	1103

Кодирование графической информации.

Растровое представление графической информации

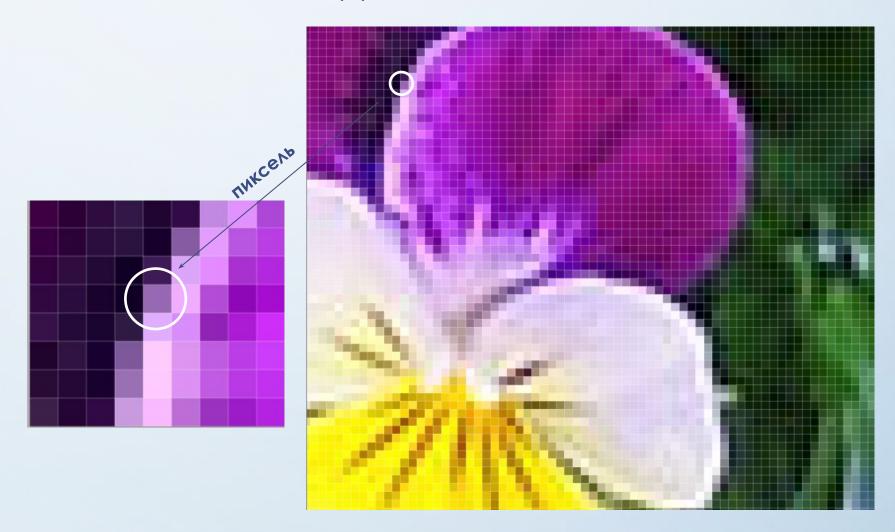
Графическая информация может быть представлена в аналоговой и дискретной форме

живописное полотно

цифровая фотография

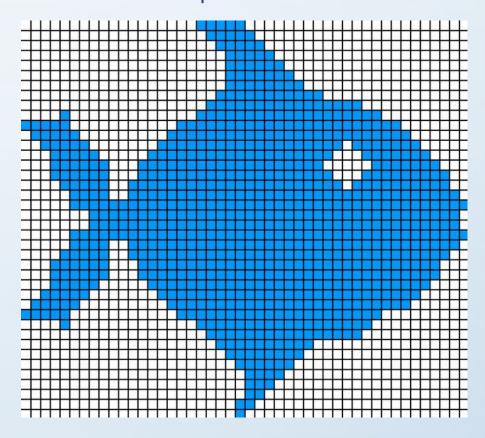
Преобразование изображения из аналоговой (непрерывной) в цифровую (дискретную) форму называется

пространственной дискретизацией


Аналоговая форма

Дискретная форма

В процессе пространственной дискретизации изображение разбивается на отдельные маленькие фрагменты, точки - **пиксели**



Пиксель – минимальный участок изображения, для которого независимым образом можно задать цвет.

В результате пространственной дискретизации графическая информация представляется в виде растрового изображения.

Разрешающая способность растрового изображения определяется количеством точек по горизонтали и вертикали на единицу длины изображения.

Чем меньше размер точки, тем больше разрешающая способность, а значит, выше качество изображения.

Величина разрешающей способности выражается в dpi (dot per inch – точек на дюйм), т.е. количество точек в полоске изображения длиной один дюйм (1 дюйм=2,54 см.)

В процессе дискретизации используются различные палитры цветов (наборы цветов, которые могут принять точки изображения).

Количество цветов **N** в палитре и количество информации **I**, необходимое для кодирования цвета каждой точки, могут быть вычислены по формуле: **N=2**

Количество информации, которое используется для кодирования цвета точки изображения, называется **глубиной цвета**.

Пример:

Для кодирования черно-белого изображения (без градации серого) используются всего два цвета – черный и белый. По формуле **N=2** можно вычислить, какое количество информации необходимо, чтобы закодировать цвет каждой точки:

$$2=2$$
 \implies $2=2$ \implies $1=1$ бит

Для кодирования одной точки черно-белого изображения достаточно 1 бита.

Глубина цвета и количество цветов в палитре

Глубина цвета, I (битов)	Количество цветов в палитре, N
8	$2^8 = 256$
16	2 ¹⁶ = 65 536
24	24 2 = 16 777 216

Зная глубину цвета, можно вычислить количество цветов в палитре.

Задачи:

1. Растровый графический файл содержит черно-белое изображение с 16 градациями серого цвета размером 10x10 пикселей. Каков информационный объем этого файла?

2. 256-цветный рисунок содержит 120 байт информации. Из скольких точек он состоит?

```
<u>Решение</u>: 8
120 байт = 120*8 бит; 256 = 2 (8 бит – 1 точка).
120*8/8 = 120
```

Задание 4

Определите количество цветов в палитре при глубине цвета 16 бит.

•Ответ: 65536 цветов

Задание 5

Цветное (с палитрой из 256 цветов) растровое графическое изображение имеет размер 10х10 точек. Какой объем памяти в байтах займет это изображение?

Ответ: 100 байт

. Задание 6

• В процессе преобразования растрового графического изображения количество цветов уменьшилось с 65536 до 16. Во сколько раз уменьшится объем занимаемой памяти?

Ответ: в 4 раза

Растровые изображения на экране монитора

Качество изображения на экране монитора зависит от величины

пространственного разрешения и глубины цвета.

определяется как произведение количества строк изображения на количество точек в строке (800*600 1024*768 1400*1050 и выше)

характеризует количество цветов, которое могут принимать точки изображения (измеряется в битах)

Формирование растрового изображения на экране монитора

Вид	Видеопамять							
Номер точки	Двоичный код цвета точки							
1	01010101							
2	10101010							
• • • •								
800	11110000							
• • • •								
480 000	11111111							

Объем видеопамяти.

Информационный объем требуемой видеопамяти можно рассчитать по формуле:

$$I_n = I \times X \times Y$$
,

где In - информационный объем видеопамяти в битах;

X × У - количество точек изображения (X - количество точек по горизонтали, Y - по вертикали);

I - глубина цвета в битах на точку.

Пример:

Необходимый объем видеопамяти для графического режима с пространственным разрешением 800 x 600 точек и глубиной цвета 24 бита равен:

 $In = I \times X \times Y = 24$ бита \times 800 \times 600 =

=11 520 000 бит :8= 1 440 000 байт :1024=

= 1 406,25 Кбайт :1024= 1,37 Мбайт.

Задачи:

1. Рассчитайте объём памяти, необходимый для кодирования рисунка, построенного при графическом разрешении монитора 800x600 с палитрой 32 цвета.

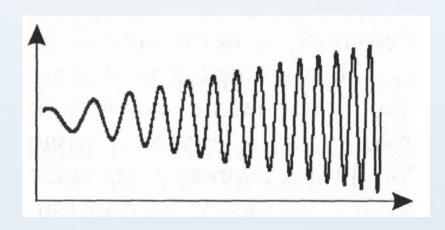
Решение:

 $32 = 2^5$

800*600*5 бит = 2400000 бит : 8 : 1024 = 293 Кбайт

2. Какой объем видеопамяти необходим для хранения четырех страниц изображения при условии, что разрешающая способность дисплея 640х480 точек с палитрой 32 цвета?

Решение:

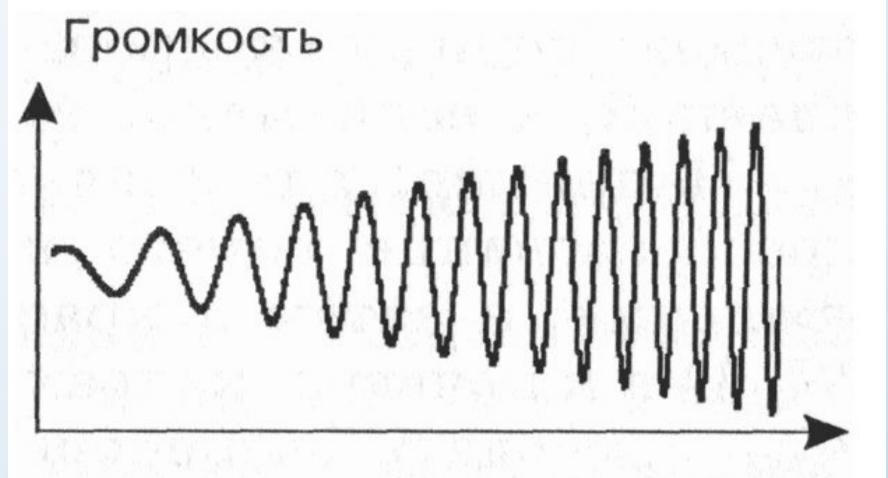

640*480*5*4 = 6144000 бит : 8 : 1024 = 750 Кбайт

Задание 7

Достаточно ли видеопамяти объемом 256 Кбайт для работы монитора в режиме 640х480 и палитрой из 16 цветов?

•Ответ: достаточно

Кодирование звуковой информации



Способы хранения звука

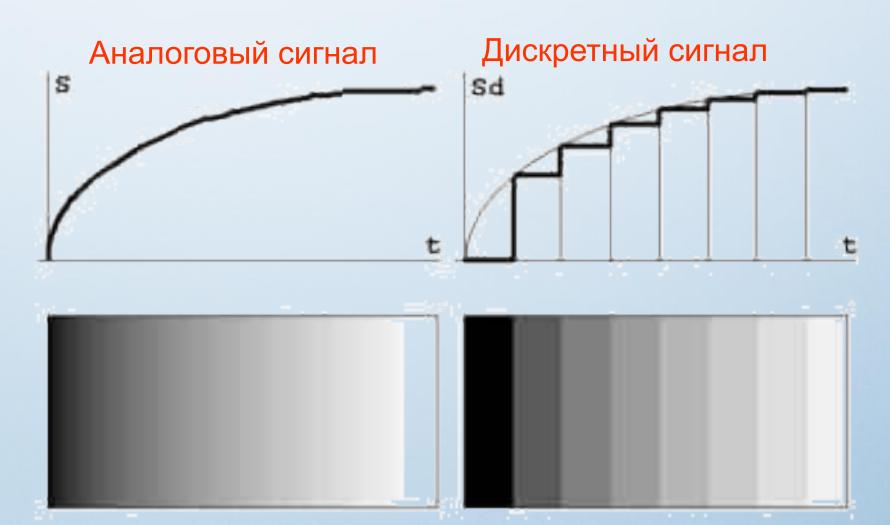
Звукозапись – процесс сохранения информации о параметрах 3BVKOBЫХ BOAH Способы хранения Цифровой **Аналоговый** временная грампластинка дискретизация магнитная квантование лента

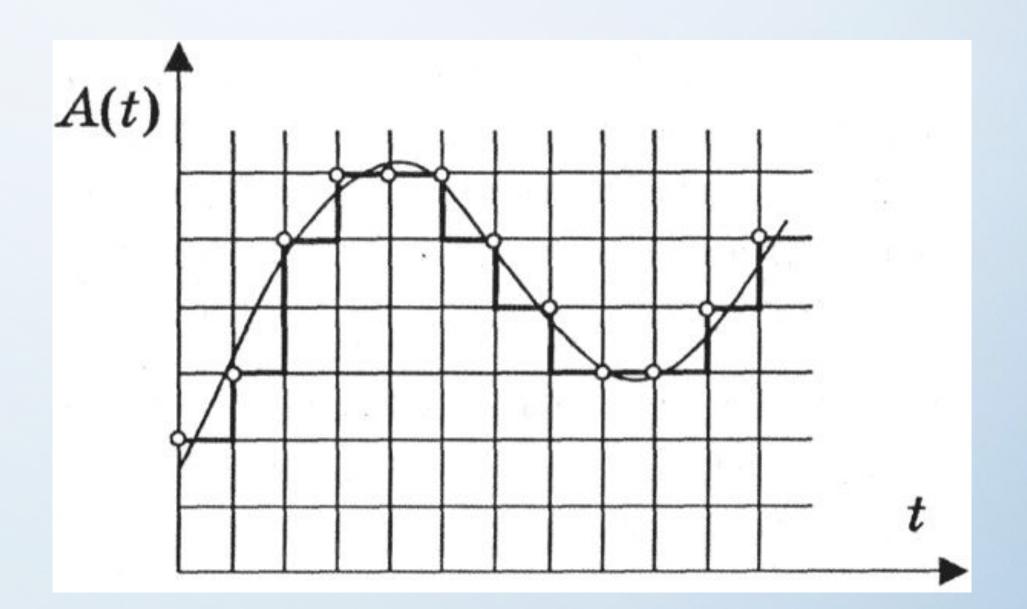
Звук – это волна с непрерывно меняющейся амплитудой и частотой

Чем больше амплитуда, тем громче звук Чем больше частота, тем больше тон

Низкий звук Высокий звук Для измерения громкости звука применяется специальная единица "децибел" (дбл)

Некоторые значения уровней шума


Порог слышимости	0 дБ
Шорох листьев, шум слабого ветра	10-20 дБ
Шепот (на задней парте)	20-30 дБ
Разговор средней громкости (в кабинете директора)	50-60 дБ
Автомагистраль с интенсивным движением	80-90 дБ
Авиадвигатели	120-130 дБ
Болевой порог	140 дБ


Кодирование звуковой информации

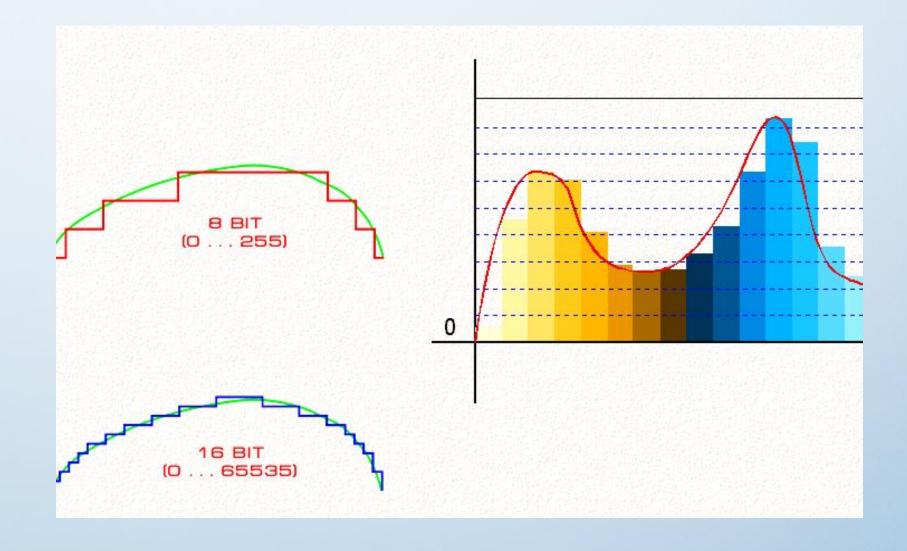
С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию.

Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации.

Дискретизация - это преобразование непрерывных сигналов в набор дискретных значений, каждому из которых присваивается определенный код.

Характеристика цифрового звука:

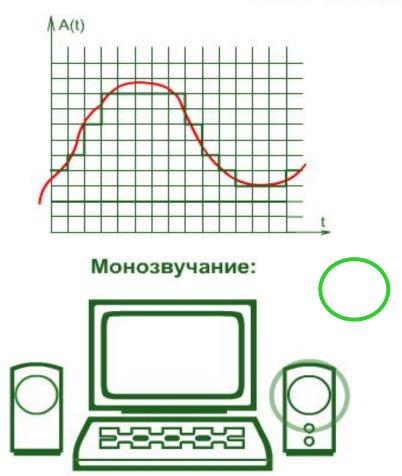
Частота
 Глубина

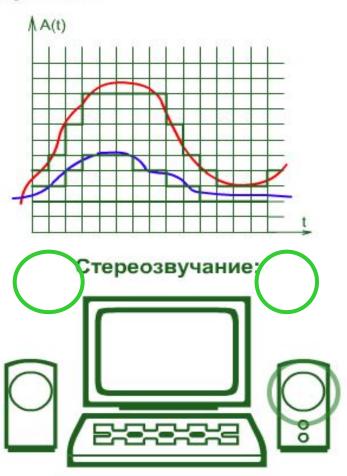

Частота дискретизации 3вука - это количество измерений громкости звука за одну секунду

Частота дискретизации

- Количество измерений уровней сигнала за 1 секунду.
- Измеряется в Герцах.
- 1 измерение в секунду 1 Гц
- 1000 измерений в секунду 1кГц
- Изменяется в диапазоне от 8кГц до 48 кГц

Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее "лесенка" цифрового звукового сигнала повторяет кривую диалогового сигнала


Глубина (разрядность) кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.



Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле $N = 2^{l}$. Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно: $N = 2^1 = 2^{16} = 65536$.

Режимы

Моно- и стереорежимы звучания:

Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим "моно").

Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим "стерео").

```
Объем файла (бит) =
частота (Гц) *
глубина (бит) *
время (сек) *
режим (моно = 1, стерео =
```

Задача

Определить информационный объем стерео аудио файла длительностью звучания 1 секунда при высоком качестве звука(16 битов, 48 кГц).

Запись условия

T=1 cek

I=16 бит

H= 48 кГц

Стерео - ×2

∧=ṡ

Решение

$$V = T \times I \times H \times 2$$

$$V=1 \times 16 \times 48000 \times 2=$$

1536000 бит/8 =192000 байт/1024 = 187,5 Кбайт

Задача

Если глубина кодирования звука составляет 16 битов рассчитайте количество уровней громкости звука

$$N = 2^{I}$$

$$N = 2^1 = 2^{16} = 65536$$
.

16 бит - глубина звука

44 кГц - частота дискретизации

10 сек - длительность звучания файла

Стерео - режим звучания

Задание

Подсчитайте объем памяти для хранения звукового файла. Необходимые данные для решения задачи приведены выше.

Задача

Определить информационный объем цифрового аудио файла длительностью звучания которого составляет 10 секунда при частоте дискретизации 22,05 кГц и разрешении 8 битов.

Запись условия

Т=10 сек

I=8 бит

Н= 22,05 кГц

Моно- ×1

∧=Ś

Решение

$$V = T \times I \times H \times 2$$

$$V=10 \times 8 \times 22050 \times 1=$$