
1

Control Structures
 Week 4

Conditional Operators

Syntax:
exp1 ? exp2 : exp3
Where exp1,exp2 and exp3 are expressions
Working of the ? Operator:
Exp1 is evaluated first, if it is nonzero(1/true) then the expression2

is evaluated and this becomes the value of the expression,
If exp1 is false(0/zero) exp3 is evaluated and its value becomes the

value of the expression
Ex: m=2;

 n=3
 r=(m>n) ? m : n;

Increment & Decrement Operators
C++ supports 2 useful operators namely
1. Increment ++
2. Decrement- -operators
The ++ operator adds a value 1 to the operand
The -- operator subtracts 1 from the operand
++a or a++
--a or a--

Rules for ++ & -- Operators
� These require variables as their operands.

� When postfix either ++ or -- is used with the variable in a given
expression, the expression is evaluated first and then it is
incremented or decremented by one.

� When prefix either ++ or – is used with the variable in a given
expression, it is incremented or decremented by .one first and
then the expression is evaluated with the new value

Examples for ++ and -- Operators

Let the value of a =5 and b=++a then
a = b =6
Let the value of a = 5 and b=a++ then
a =6 but b=5
i.e.:
1. a prefix operator first adds 1 to the operand and then the result is

assigned to the variable on the left
2. a postfix operator first assigns the value to the variable on left

and then increments the operand.

Shorthand Assignment Operators

Simple Assignment operator
Shorthand Operator

a = a+1 a + =1

a = a-1 a - =1

a = a* (m+n) a * = m + n

a = a / (m+n) a / = m + n

a = a %b a %=b

Objectives
� To use the selection structure to choose

among the alternative actions
■ if selection statement
■ Double Selection (if else) statements
■ Nested Selection statements

7

8

Control structures

� Control structure
■ A control statement and the statements whose execution it

controls.
■ a control statement is any statement that alters the linear

flow of control of a program. C++ examples include:
if-else, while, for, break, continue and return statement

� Sequential execution
■ Statements executed in order

� Transfer of control
■ Next statement to be executed may be other than the next

one in sequence.

9

Control structures
� Bohm and Jacopini’s control structures

 Bohm and Jacopino’s work demonstrate that all programs could be written in terms of

only three control structures.
 Sequence structures, selection structures and repetition structures.

■ Sequence structure
� Built into C++. Programs executed sequentially by default.

■ Selection structures

� C++ has three types - if, if/else, and switch
■ Repetition structures

� C++ has three types – for, while and do while

10

Control structures
if Selection Structure

1. Perform an action if condition is true.
2. .Skip the action if condition is false.

If/else Selection Structure
1. Perform an action if condition is true.
2. Performs a different action if the condition is false.

We are going to discuss if and if/else selection
structures and switch first and will explain the
repetition structures later. It was just an
introduction to these structures.

11

12

Decision making structure/ selection structure

� Selection structure/decision structure
allows the program to make a decision or comparison and then select one of two paths,

depending on the result of the comparison.
� Condition

condition is a logical expression that evaluates to true or false. It could be a
relational or Boolean expression. In other words
■ Specifies the decision you are making
■ Must result in either a true or false answer

IF Structure
■ One statement or a block of statement enclosed in braces {} i.e.

(compound statement), to be processed If condition met otherwise it is
skipped.

■ Uses equality and relational operators

13

Equality and Relational operators

■ Conditions in if structures can be formed by using the equality
and relational operators

■ Equality operators
� Same level of precedence
� Associated left to right.

■ Relational operators
� Same level of precedence.
� Associated left to right.

Equality operators precedence is lower then precedence
of relational operators.

14

Equality and relational operators

15

Boolean Expressions
� Boolean expressions are expressions that are

either true or false
� comparison operators such as '>' (greater than)

are used to compare variables and/or numbers
■ (grade >= 60) Including the parentheses, is the

boolean expression from the grade example
■ A few of the comparison operators that use two

 symbols (No spaces allowed between the symbols!)
� > greater than
� != not equal or inequality
� == equal or equivalent
� <= less than or equal to
 etc

16

If Selection Structure

■ The primary C++ selection structure statement used to
perform a single-alternative selection.

■ Choose among alternative courses of action

■ If the condition is true
� statement Print statement executed, program continues

to next
■ If the condition is false

� Print statement ignored, program continues

17

Flow chart

■ Graphical representation of an algorithm or a portion of algorithm.
■ Drawn using certain special-purpose symbols connected by arrows

called flow lines.
� Special purpose symbols.
 Following are some symbols to draw a flow chart and there purpose.

Rectangles are action symbols to indicate any type
of ACTION, including a calculation or an input
output operation.

Diamonds are conditional or decision symbols. It
indicates a decision to be made.

Ovals or rounded rectangles, indicate start or end of
the program usually containing the word "Start,
begin” or "End“.

18

Flow chart

Parallelogram are the input/output symbols

Arrows, showing what's called "flow
of control“. An arrow coming from
one symbol and ending at another
symbol represents that control passes to
the symbol the arrow points to. Arrows
are also called flow lines.

19

If selection structure flow chart

20

If selection structure
■ example:

Pseudocode
 If student’s grade is greater than or equal to 60

Print “Passed”

C++ code
if (grade >= 60)
 cout << "Passed";

21

If selection structure
� Flow chart for the pseudocode statement.

true

false

grade >= 60 print “Passed”

A decision can be made on
any expression.

22

Example

1. Example is using the relational and equality operators.
2. Following example used six if statements to compare two

numbers input by the user.
3. If the condition in any of these if statements is satisfied, the

output statement associated with if is executed.
4. If the condition with the if statement is false the output

statement associated with that if statement is skipped.
5. Observe the different outputs for various inputs at the end of the

program.

23

1 // example
2 // Using if statements, relational
3 // operators, and equality operators
4 #include <iostream.h>
5
6
7
8
9
10 int main()
11 {
12 int num1, num2; // declare variables
13
14 cout << "Enter two integers, and I will tell you\n"
15 << "the relationships they satisfy: ";
16 cin >> num1 >> num2; // read two integers
17
18 if (num1 == num2)
19 cout << num1 << " is equal to " << num2 << endl;
20
21 if (num1 != num2)
22 cout << num1 << " is not equal to " << num2 << endl;
23
24 if (num1 < num2)
25 cout << num1 << " is less than " << num2 << endl;
26
27 if (num1 > num2)
28 cout << num1 << " is greater than " << num2 << endl;
29
30 if (num1 <= num2)
31 cout << num1 << " is less than or equal to "
32 << num2 << endl; //continued on next slide
33

if structure compares values
of num1 and num2 to test for
equality.

If condition is true (i.e., values
are equal), execute this
statement.if structure compares values

of num1 and num2 to test for
inequality.

If condition is true (i.e., values
are not equal), execute this
statement.If structure compare the

values of num1 and num2 to
test if num1 is less than num2

If condition is true (i.e., num1
is less than num2), execute
this statement.if structure compares values

of num1 and num2 to test if
num1 is greater than num2

If condition is true (i.e., num1
is greater than num2),
execute this statement.if structure compares values

of num1 and num2 to test if
num1 is less than or equal to
num2

If condition is true (i.e., num1
is less than or equal to num2),
execute this statement.

24

34 if (num1 >= num2)

35 cout << num1 << " is greater than or equal to "

36 << num2 << endl;

37

38 return 0; // indicate that program ended successfully

39 }

Input is 35 and 30

Input is 25 and 25

Input is 10 and 20

The if-else statement

• The if statement by itself will execute a single statement, or a
group of statements , when conditions following if is true.

• It does nothing when the conditions is false.

• Can we execute one group of statements if the condition is true
and another group of statements if the condition is false?

• Of course this is what is the purpose of else statement, which
is demonstrated in the following example:

25

Ques: In a company an employee is paid as under:
If his basic salary is less than $1500, then HRA = 10% of
basic salary and DA=90% of basic. If his salary is either
equal to or above $1500, then HRA = $500 and DA=98% of
basic salary. If the employee’s salary is input through
keyboard write a program to find his gross salary.

26

27

If/else selection structure
■ Different actions if conditions true or false

� Syntax
� A single statement for each alternative

if (Boolean_expression)
 yes_statement;

 else
 no_statement;
� A sequence statement for each alternative
if (Boolean_expression)

{ yes_statement1;
 yes_statement2;

 yes_statement last; }
else
 { no_statement1;

 no_statement2;
 no_statement last; }

28

If/else selection structure flow chart

Boolean
expression

Action if
false

Action if true

truefalse

29

If/else selection structure
Example
� Pseudocode

if student’s grade is greater than or equal to 60
print “Passed”

else
print “Failed”

� C++ code
if (grade >= 60)
 cout << "Passed";
else
 cout << "Failed";

30

If/else selection structure
Flow chart for the pseudocode

truefalse

print “Failed” print “Passed”

grade >= 60

31

Compound Statement
� Compound statement

■ Set of statements within a pair of braces also known as
BLOCK

 if (grade >= 60)
 cout << "Passed.\n";
else {
 cout << "Failed.\n";
 cout << "You must take this course again.\n";
}

■ Without braces,
cout << "You must take this course again.\n";
always executed

32

Another simple Example

1. //program to determine if user is ill

2. #include <iostream>
3. using namespace std;
4. int main()
5. {
6. const double NORM = 98.6; // degree Fahranheit;
7. double temperature;
8. cout<<"Enter your temperature\t";
9. cin>>temperature;

10. if (temperature>NORM) //if temperature is greater than NORM print following statement
11. cout<<"\n\nYou are sick\n"<<"take rest and drink lots of fluids";
12. else //if temperature is <= NORM print following statement
13. cout<<"\n\nYou are perfectly fine";

14. return 0;
15. }

33

output

Input is 100

100 > NORM

Input is 98

98<NORM

34

Example of if and if/else selection structure drawn in flow
chart form

If selection structure(program 1) If/else selection structure(program2)

35

c++ code for the flow chart of if selection structure
(program 1).

1. //program 1
2. //program to find the part prices for the given part number.

3. #include<iostream>
4. using namespace std;
5. int main()
6. {
7. int part_number, ;
8. float price;
9. cout<<"enter part number"<<endl;

10. cin>>part_number;
11. cout<<"enter price"<<endl;
12. cin>>price;
13. if(part_number==203)
14. price = price*1.1;
15. cout<<"price is "<<price;
16. return 0;
17. }

36

Output of program 1

Part_number is equal to 203

Part_number is not equal to 203

37

c++ code for the flow chart of if/else selection structure
(program 2).

� //program to calculate the sales commission

� #include <iostream>
� using namespace std;
� int main()
� {
� float sales, commission;
� cout<<"enter the sales"<<endl;
� cin>>sales;
� if (sales>1500)
� commission = sales*0.2;
� else
� commission = sales*0.1;
� cout<<"commission is"<<commission;
�
� return 0;
� }

38

Output of program 2

 Sales is 1500

Sales is greater than 1500

39

Example of if/else

� Write a program to calculate the gross pay of an employee.
� The employee is paid at his basic hourly rate for the first 40 hours worked

during a week. Any hours worked beyond 40 is considered overtime.
� overtime is paid at the 1.5 times the hourly rate.

Pseudocode

If total number of hours >40
 Gross pay = rate*40 + rate*1.5(hours – 40)

Else
Gross pay = rate * hours

40

C++ code
1. #include <iostream>
2. using namespace std;
3. int main()
4. {
5. int hour; //declaration
6. double gross_pay, rate;
7. cout<<"enter the hourly rate of pay\t"<<endl; //prompt
8. cin>>rate; //reading data
9. cout<<"enter the number of hours worked \t"<<endl; //prompt

10. cin>>hour; //readin data

11. if(hour>40) //condition if working hours is greater than 40
12. gross_pay = rate*40 + 1.5*rate*(hour - 40); //gross pay including extra hour
13.
14. else //if working hour is <=40 then use this formula to get gross pay
15. gross_pay = rate*hour;
16.
17. cout<<" Gross pay is \t"<<gross_pay<<endl; //printing the gross pay on screen.
18. return 0;
19. }

41

output

Hour<40

Hour>40

42

Nested if/else structure

� if structure that rests entirely within another if structure,
within either the if or the else clause

■ One inside another, test for multiple cases
■ Once condition met, other statements skipped

43

Simple example to understand the nested if/else

� Consider an example of a program segment that accepts a gender
code and print gender according to that code.

� Pseudocode
 if the gender code is F
 print female

 else
 if the gender code is M

print male
 else

print invalid code

44

Simple example to understand the nested if/else

� Flow chart

45

Simple example to understand the nested if/else

� C++ code

//F and M are correct codes
//f and m are invalid codes

46

Nested if/else structure
■ following pseudocode is example of nested if/else
■ if student’s grade is greater than or equal to 90

 Print “A”
■ else

 if student’s grade is greater than or equal to 80
 Print “B”
else

 if student’s grade is greater than or equal to 70
 Print “C”
 else
 if student’s grade is greater than or equal to 60
 Print “D”

 else
� Print “F”

47

Nested if/else structure
C++ code

if (grade >= 90) // 90 and above
 cout << "A";
else

 if (grade >= 80) // 80-89
 cout << "B";
 else

 if (grade >= 70) // 70-79
 cout << "C";
 else

 if (grade >= 60) // 60-69
 cout << "D";
 else // less than 60
 cout << "F";

� if grade>=90, first four conditions will be true. But only the cout statement after the
first test will be executed. After that cout is executed, the else part of the outer
if/else statement is skipped.

48

Avoiding Common Pitfalls with if Statements

� Forgetting that C++ is case sensitive
� Assuming that indentation has a logical purpose
� Adding an unwanted semicolon
� Forgetting curly braces
� Using = instead of == (explained with example on next slide)
� Making unnecessary comparisons

49

Confusing Equality (==) and Assignment (=) Operators

� L-values
■ Expressions that can appear on left side of equation
■ Can be changed (I.e., variables)

� x = 4;

� R-values
■ Only appear on right side of equation
■ Constants, such as numbers (i.e. cannot write 4 = x;)

� L-values can be used as R-values, but not vice versa

