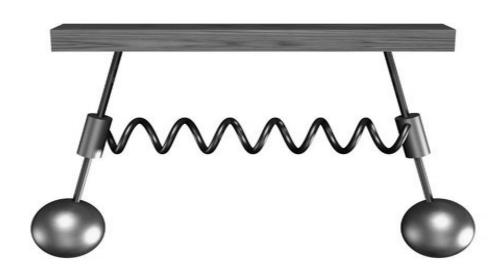
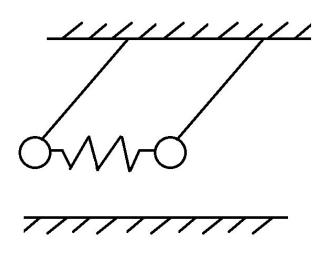

Компьютерное города моделирование колебания связного маятника



Выполнили: Буславский Тимофей Алексеевич, Костюк Артем Александрович учащиеся 9 класса

Руководитель Денискин Евгений Вадимович, учитель физики

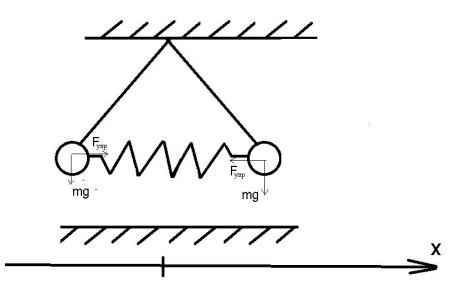
Определение связанных маятников


Цель и задачи работы

Целью нашей работы: является разработка компьютерной модели системы колеблющихся двух математически связных маятников. Для решения цели мы поставили следующие задачи:

- Разработать теоретические модели колебаний маятника, для разных режимов колебаний
- Найти условия возникновения различных колебательных режимов
- Создать компьютерную программа в Excel и на C++, которая моделирует наши колебания
- Результаты работы программ и моделей проверить на эксперименте

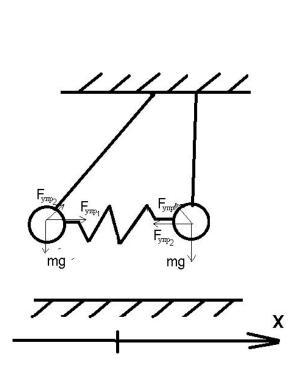
Теоретическая часть


Первый режим колебаний

$$T_{\text{CHHX}} = 2\pi \sqrt{\frac{l}{g}} (1)$$

Теоретическая часть

Второй режим колебаний



$$a = \frac{2kx}{m} + g \frac{x}{1} (2)$$

$$T_{\text{асинх}} = \frac{2\pi}{\sqrt{\frac{2k}{m} + \frac{g}{l}}} (3)$$

Теоретическая часть

Третий режим колебаний-суперпозиция первых двух

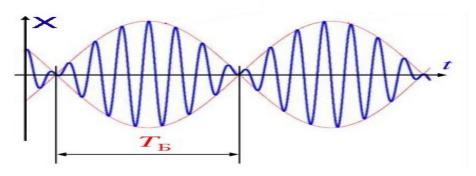
$$\begin{cases} k(x_{2} - x_{1}) + \frac{mgx_{1}}{l} = ma_{1} \\ k(x_{1} - x_{2}) + \frac{mgx_{2}}{l} = ma_{2} \end{cases}$$

$$x_{+} = x_{1} + x_{2} \\ x_{-} = x_{2} - x_{1}$$

$$\begin{cases} \frac{mgx_{+}}{l} = ma_{+} \\ 2k\Delta x + mg\Delta x = ma_{-} \end{cases}$$

$$\begin{cases} x_{1} = \frac{A\cos(\omega_{\text{синхр}}t) + A\cos(\omega_{\text{асинхр}}t)}{2} \\ x_{2} = \frac{A\cos(\omega_{\text{синхр}}t) - A\cos(\omega_{\text{асинхр}}t)}{2} \end{cases}$$

$$\begin{cases} x_{1} = \frac{A\cos(\omega_{\text{синхр}}t) - A\cos(\omega_{\text{асинхр}}t)}{2} \\ x_{2} = \frac{A\cos(\omega_{\text{синхр}}t) - A\cos(\omega_{\text{асинхр}}t)}{2} \end{cases}$$


$$\begin{cases} x_{1} = \frac{A\cos(\omega_{\text{синхр}}t) - A\cos(\omega_{\text{асинхр}}t)}{2} \\ x_{2} = \frac{A\cos(\omega_{\text{синхр}}t) - A\cos(\omega_{\text{асинхр}}t)}{2} \end{cases}$$

$$\begin{cases} x_{1} = \frac{A\cos(\omega_{\text{синхр}}t) - A\cos(\omega_{\text{асинхр}}t)}{2} \\ x_{2} = \frac{A\cos(\omega_{\text{синхр}}t) - A\cos(\omega_{\text{асинхр}}t)}{2} \end{cases}$$

$$\begin{cases} x_{1} = \frac{A\cos(\omega_{\text{синхр}}t) - A\cos(\omega_{\text{асинхр}}t)}{2} \\ x_{3} = \frac{A\cos(\omega_{\text{синхр}}t) - A\cos(\omega_{\text{асинхр}}t)}{2} \end{cases}$$

$$x_1 = A\cos(\frac{\omega_{\text{синхр}} + \omega_{\text{асинхр}}}{2}t)\cos(\frac{\omega_{\text{синхр}} - \omega_{\text{асинхр}}}{2}t) (8)$$

Биения

$$x_1 = Acos(rac{\omega_{
m cuhxp} - \omega_{
m acuhxp}}{2}t)cos(rac{\omega_{
m cuhxp} + \omega_{
m acuhxp}}{2}t)$$
 (8) $Acos(rac{\omega_{
m cuhxp} - \omega_{
m acuhxp}}{2}t)$ изменение амплитуды, $\omega_{
m cuhxp}$ и $\omega_{
m acuhxp}$ близки друг к другу, то амплитуда будет меняться медленно $rac{\omega_{
m cuhxp} + \omega_{
m acuhxp}}{2}$ частота более быстрые колебания графика

 $T_{\text{асинх}} = \frac{2\pi}{\sqrt{2k-g}} (3) \qquad \qquad \frac{2k}{m} \ll \frac{g}{l} \quad (9)$

программы для каждого маятника

Расчет ускорение

$$a = \frac{2kx}{m} + g \frac{x}{l}$$
 (2)

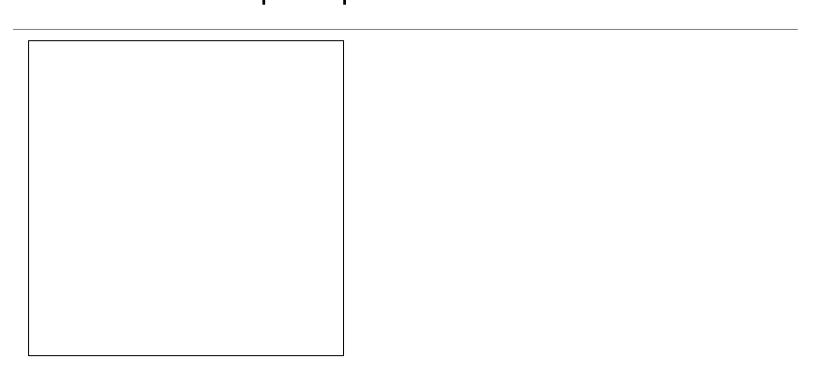
Считая на малом промежутке времени движение равноускоренным расчет скорости

$$\upsilon = \upsilon_0 + a\Delta t$$
 (10)

Расчет новых координат

$$x = x_0 + \frac{(v + v_0)}{2} \Delta t$$
 (11)

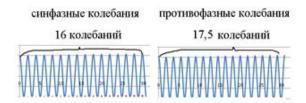
Повтор алгоритма нужное кол-во раз


Компьютерное моделирование

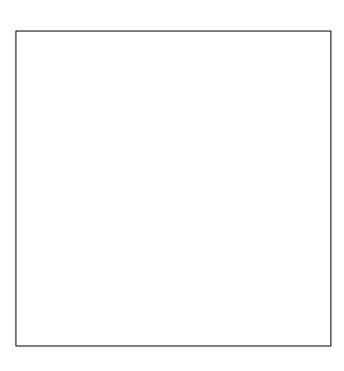
=-L\$2*(C2-B2)-K\$2*C2

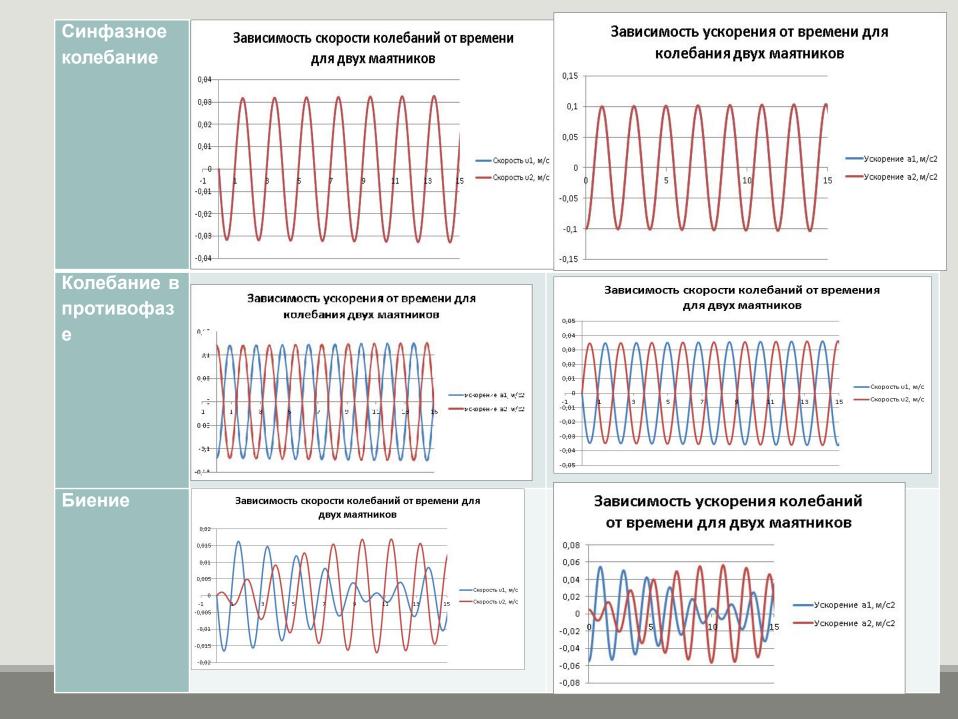
Номер ячейки		Название ячейки	
A1		Время, t с	
B1		Координата x1, м	
C1		Координата x2, м	
D1		Скорость и1, м/с	
E1		Скорость и2, м/с	
F1		Ускорение а1, м/с2	
G1		Ускорение а2, м/с2	
J1		Промежуток времени dt, c	
K1		Отношение ускорения свободного падения к длине нити g/l , 1/c2	
L1		Отношение коэффициента жесткости пружину к массе груза k/m , H/(кг м)	
A2	Начальное время 0с		
B2	Начальная н	Начальная координата тела №1: 0,01м	
C2	Начальная координата тела №2: 0м		
D2	Начальная скорость тела №1: 0, м/с		
E2	Начальная скорость тела №2: 0, м/с		
J2	Промежуток времени dt=0,001 c		
K2	Отношение ускорения свободного падения к длине нити g/l=10(1/c2)		
L2	Отношение	Отношение коэффициента жесткости пружину к массе груза k/m=1 H/(кг м)	
А3	=B2+(D2+D3)	=B2+(D2+D3)*J\$2/2	
В3	=C2+(E2+E3)*J\$2/2		
C3	=D2+F2*J\$2	=D2+F2*J\$2	
D3	=E2+G2*J\$2	=E2+G2*J\$2	
E3	=-L\$2*(B3-C3)	=-L\$2*(B3-C3)-K\$2*B3	
F2	=-L\$2*(B2-C2)	=-L\$2*(B2-C2)-K\$2*B2	

моделирование


Первый режим колебаний

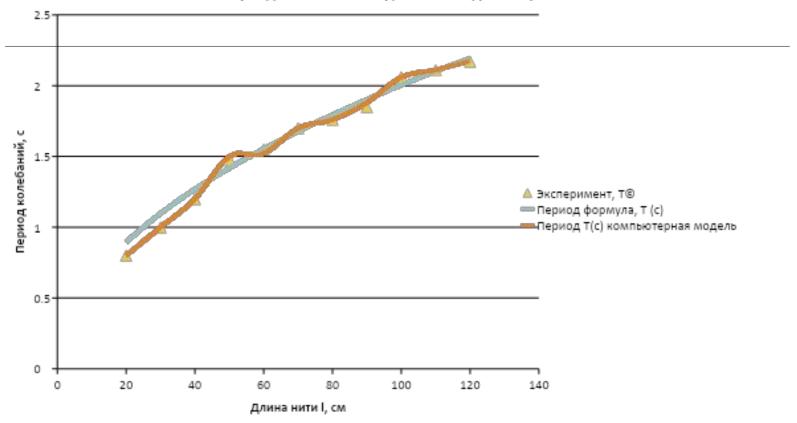
моделирование


Второй режим колебаний

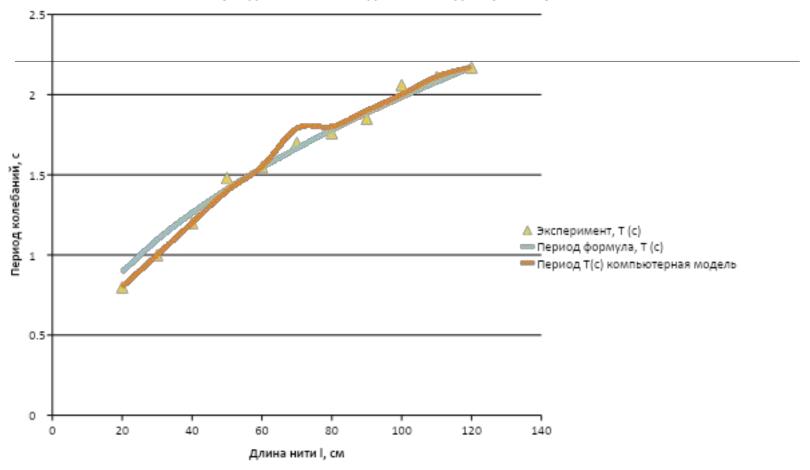


моделирование

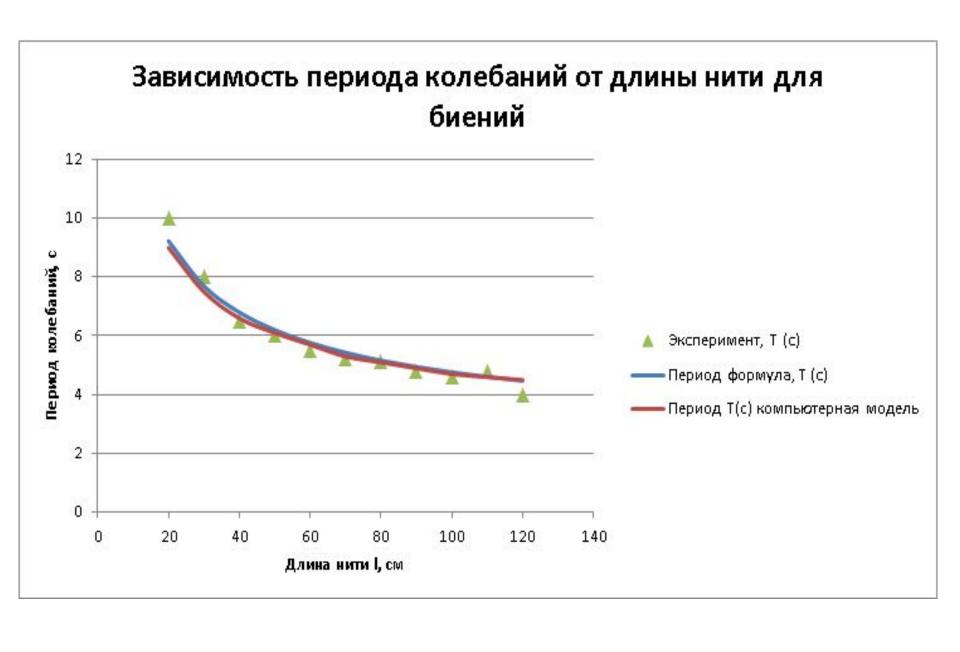
Третий режим колебаний-суперпозиция первых двух



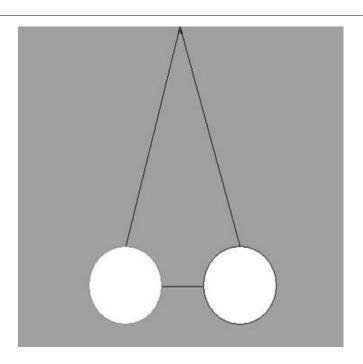
Экспериментальная часть

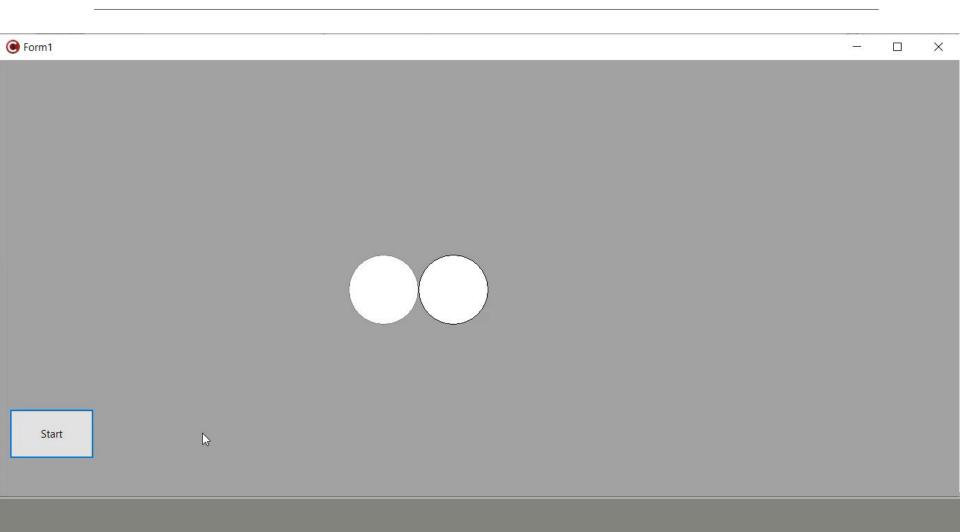


Зависимость периода колебаний от длины нити для синфазных колебаний

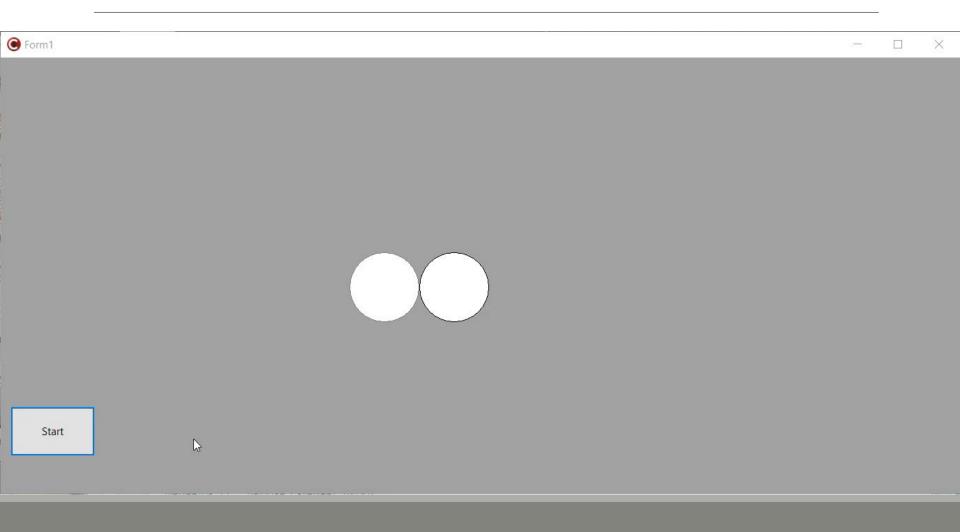


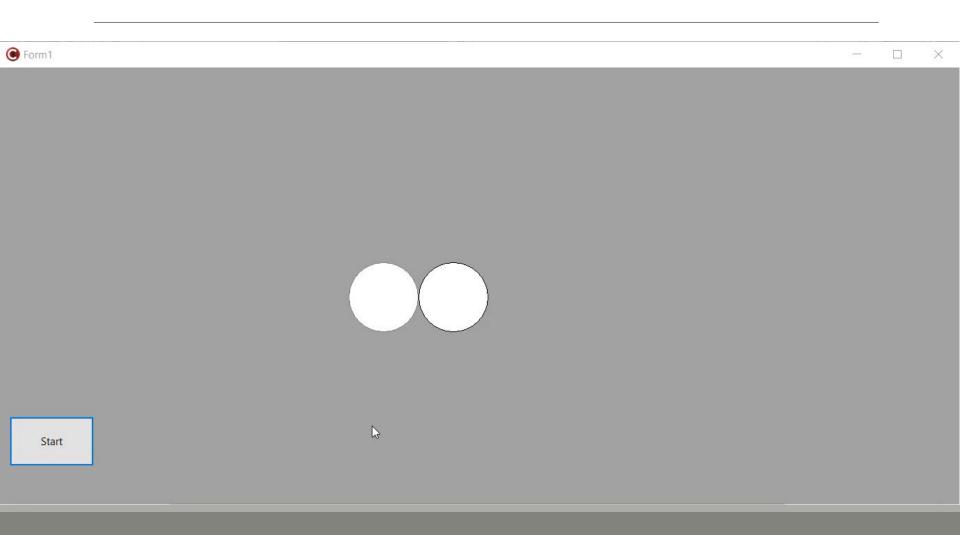
Зависимость периода колебаний от длины нити для противофазных колебаний





Компьютерная модель на С++


```
void __fastcall TForm1::Timer1Timer(TObject
*Sender)
{
    t = t + 0.001;
    a1 = -1*km*(x1 -x2) - gl*x1;
    a2 = -1*km*(x2 -x1) - gl*x2;
    v1 = v1 +a1*t;
    v2 = v2 +a2*t;
    x1 = x1 + v1*t;
    x2 = x2 + v2*t;
}
```



Симуляция Синфазных колебаний

Симуляция противофазных колебаний

Симуляция биения

Выводы

- 1) Нами разработаны теоретические модели колебаний маятника, для синфазных противофазных колебаний и любых других колебаний связных маятников.
- 2)Доказано, что любое колебание сводится к суперпозиции синфазного и противофазного колебаний.
- 3) Рассмотрен такой частный случай произвольного колебания как биения. Получены условия возникновения биений
- 4)Создана компьютерная программа в Excel и на C++, которая моделирует наши колебания, строит графики зависимости координаты от времени для обоих маятников, а также графики зависимости скорости и ускорения от времени. А также компьютерная программа на C++, которая наглядна демонстрирует модель колебаний двойного маятника.
- 5)Результаты работы программ и моделей проверены на эксперименте, в котором получена хорошая согласованность с нашей теорией