## **VITMO**

Дисциплина: Основы взаимозаменяемости

Лекция 2: Соединения и посадки.

Лекция 3: Рекомендуемые посадки.

## **VİTMO**

Лекция 2: Соединение и посадки.



Предметом курса «Основы взаимозаменяемости» является выяснение условий обеспечения взаимозаменяемости при конструировании приборов и решении других задач, связанных с обеспечением высококачественной работы изделий.

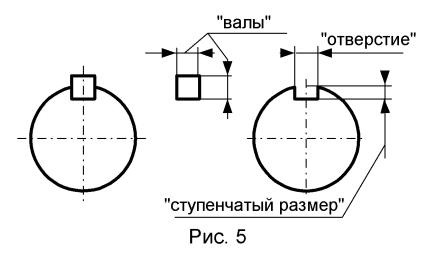
#### Содержание курса

#### Часть 1

Основные понятия и определения. Размеры (определения, виды размеров, нанесение на чертежах, нормальные линейные размеры, допуски и отклонения размеров, условия годности размеров).

#### Часть 2

Соединения и посадки. Стандартизация соединений гладких элементов деталей (принципы организации единой системы допусков и посадок – ЕСДП).


## Сопряжение деталей







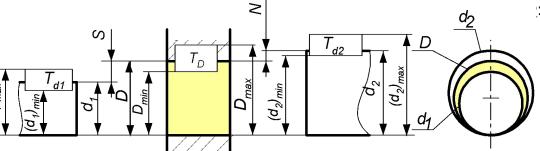
Детали в изделиях не являются изолированными, а сопрягаются друг с другом отдельными поверхностями или их фрагментами. Характер этого взаимодействия, определяющий эксплуатационные свойства сопрягаемой пары, называется **посадкой.** 





Соединение деталей может происходить с зазором, если размер отверстия больше 🤝 🔀 размера вала,





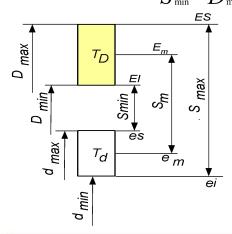

или с натягом, если размер вала до сборки больше размера отверстия.

**Зазором S** называется положительная разность размеров отверстия и вала, создающая свободу относительного вращения в подвижных соединениях (D>d1). При этом образуется подвижная посадка.

**Натягом N** называется положительная разность размеров вала и отверстия до сборки деталей в узел, с **>**D). В этом

случае образует




## Предельные зазоры и натяги в посадках. Допуск посадки

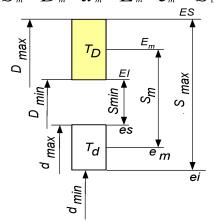


В подвижных посадках (посадки с зазором) зазор может изменяться от наименьшего 🔁 🔀 до наибольшего предельного значения.



**Наименьший (гарантированный) зазор**  $S_{min}$  есть положительная разность между наименьшим предельным размером отверстия и наибольшим предельным размером вала, или между нижним отклонением отверстия и вер $S_{\min} = D_{\min} - d_{\max} = EI - e_S$  эла:




## Предельные зазоры и натяги в посадках. Допуск посадки

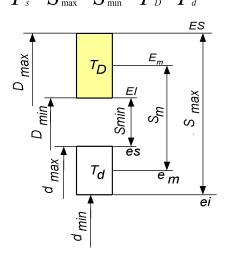


**Наибольший зазор**  $S_{max}$  есть положительная разность между наибольшим предельным размером отверстия и наименьшим предельным размером вала, или между верхним отклонением отверстия и нижни  $S_{max} = D_{max} - d_{min} = ES - ei$ 



**Средний (наиболее вероятный) зазор S\_m** есть положительная разность между средними размерами или средними отклонениями отверстия и вала, или среднее арифметическое наибольшего и  $H_s S_m = D_m - d_m = E_m - e_m = (S_{max} + S_{min})/2$ 

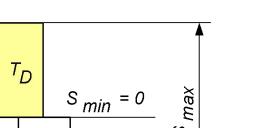



## Предельные зазоры и натяги в посадках. Допуск посадки




Допуск зазора Ts (допуск посадки) определяет возможное (или допустимое) колебание величины зазора в соединении, т.е. определяет точность посадки. Чем меньше допуск посадки, тем она точнее. Разность предельных значений зазора (наибольшего и наименьшего) или сумма допусков отверстия и вала, составляющих соединение и есть допуск зазора и $T_s = S_{
m max} - S_{
m min} = T_{
m D} + T_{
m d}$ 








## **I/İTMO**



Расположение полей допусков при сопряжении деталей с гарантированным зазором. К посадкам с зазором относится также посадка, у которой наименьший зазор  $S_{\min} = 0$ 



Пример скользящей посадки. На схеме посадки нижняя граница поля допуска отверстия совпадает с верхней границей поля допуска вала

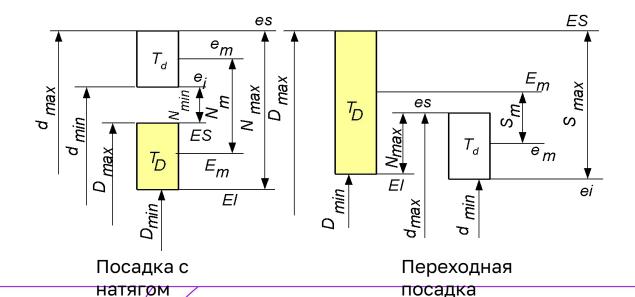
 $T_d$ 





## Посадка с натягом. Определение натяга




$$N_{\min} = d_{\min} - D_{\max} = ei - ES = -S_{\max}$$

$$N_m = d_m - D_m = e_m - E_m = (N_{\text{max}} + N_{\text{min}})/2 = -S_m$$



$$N_{\text{max}} = d_{\text{max}} - D_{\text{min}} = es - EI = -S_{\text{min}}$$

$$T_N = N_{\text{max}} - N_{\text{min}} = T_D + T_d$$



## **Изменение характера сопряжения в зависимости от взаимного расположения полей допусков**





Стандартизация соединений гладких элементов деталей (принципы организации единой системы допусков и посадок – ЕСДП).

## Принципы построения ЕСДП. 1-ый принцип



#### 1-й принцип.



Установлено 20 квалитетов по точности изготовления и определены формулы для расчета допусков.

$$IT = ki$$

Допуск IT рассчитывается по формуле:

где k - число единиц допуска, установленных для каждого квалитета;

і – единица допуска, зависящая только от размера (таблица, слайд 13).

Стандартом установлены квалитеты 01,0, 1,2,3,...,17,18.

Самые точные квалитеты (01,0,1,2,3,4), как правило, применяются при изготовлении образцовых мер и калибров.

Квалитеты с 5 по 11 – для сопрягаемых элементов деталей;

Квалитеты с 12 по 18 – для несопрягаемых деталей.

Для всех размеров, входящих в один и тот же интервал, допуски и отклонения установлены одинаковыми и подсчит $_{D_u} = \sqrt{D_{\max} D_{\min}}$  по среднему геометрическому крайних значений каждого интервала:

## Таблица расчета допусков



| 6 |  |
|---|--|



| Квалитет                                       | 5                                           | 6                                            | 7  | 8  | 9  | 10            | 11  | 12     | 13      | 14     | 15     | 16      | 17      | 18   |
|------------------------------------------------|---------------------------------------------|----------------------------------------------|----|----|----|---------------|-----|--------|---------|--------|--------|---------|---------|------|
| Число единиц допуска<br>k                      | 7                                           | 10                                           | 16 | 25 | 40 | 64            | 100 | 160    | 250     | 400    | 640    | 1000    | 1600    | 2500 |
| Допуск для размеров<br>до 500 мм               |                                             | $IT=ki,$ где $i=0,45\sqrt[3]{D}+0,001D,$ мкм |    |    |    |               |     |        |         |        |        |         |         |      |
| Допуск<br>для размеров<br>свыше 500 до 3150 мм | $IT = kI$ . где. $I = 0{,}004D + 21{,}$ мкм |                                              |    |    |    |               |     |        |         |        |        |         |         |      |
| Примечание                                     | 1.                                          |                                              | -  |    |    | етрич<br>меро |     | из кра | ійних з | значен | ний ка | ждого и | інтерва | ла   |

Таблица приведена в сокращении

### Значения допусков



В ГОСТ 25346-89 приведены числовые значения допусков для каждого квалитета и с учетом номинальных размеров. В сокращенном виде (для наиболее распространенных во приборостроении квалитетов – с 5-го по 12-й) значения допусков приведены в таблице:

| Интервалы     | Квалитеты |     |    |    |     |     |     |     |
|---------------|-----------|-----|----|----|-----|-----|-----|-----|
| номинальны    | 5         | 6   | 7  | 8  | 9   | 10  | 11  | 12  |
| x             |           |     |    |    |     |     |     |     |
| размеров,     |           |     |    |    |     |     |     |     |
| ММ            |           |     |    |    |     |     |     |     |
| До 3          | 4         | 6   | 10 | 14 | 25  | 40  | 60  | 100 |
| Св. 3 до 6    | 5         | 8   | 12 | 18 | 30  | 48  | 75  | 120 |
| Св. 6 до 10   | 6         | 9   | 15 | 22 | 36  | 58  | 90  | 150 |
| Св.10 до 18   | 8         | 11  | 18 | 27 | 43  | 70  | 110 | 180 |
| Св.18 до 30   | 9         | 13  | 21 | 33 | 52  | 84  | 130 | 210 |
| Св.30 до 50   | 11        | 16  | 25 | 39 | 62  | 100 | 160 | 250 |
| Св.50 до 80   | 13        | 19  | 30 | 46 | 74  | 120 | 190 | 300 |
| Св.80 до 120  | 15        | 22  | 35 | 54 | 87  | 140 | 220 | 350 |
| Св.120 до 180 | 18        | 25  | 40 | 63 | 100 | 160 | 250 | 400 |
| Св.180 до 250 | 20        | 29  | 46 | 72 | 115 | 185 | 290 | 460 |
| Св. 250 до315 | 23        | 32  | 52 | 81 | 130 | 210 | 320 | 520 |
| Св.315 до 400 | 25        | 36  | 57 | 89 | 140 | 230 | 360 | 570 |
| Св.400 до 500 | 27        | 40/ | 63 | 97 | 155 | 250 | 400 | 630 |

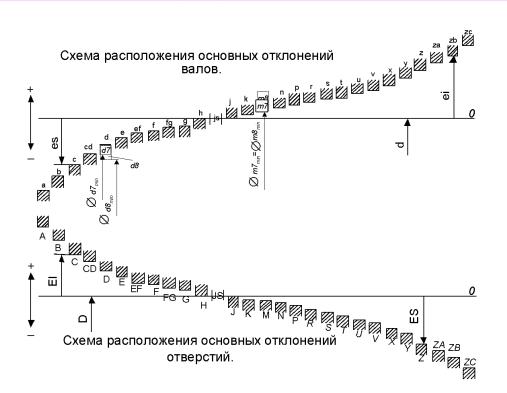
### 2-ой принцип



#### 2-й принцип.

Установлены основные отклонения валов и отверстий.




Основное отклонение – это одно из двух предельных отклонений (верхнее или нижнее), определяющее положение поля допуска относительно нулевой линии.

В ЕСДП установлено по 28 основных отклонений валов и отверстий, которые обозначаются строчными для валов и прописными для отверстий буквами латинского

| ліфавита.                 |         | ВАЛЫ                               |                            |  |  |  |
|---------------------------|---------|------------------------------------|----------------------------|--|--|--|
| Верхнее отклонение es (-) |         | Нижнее отклонение еі (+)           |                            |  |  |  |
| a b c cd d e ef f fg g h  | js      | js j k m n prst u v x y z za zb zc |                            |  |  |  |
| Посадки с зазором         | Переход | дные посадки                       | Посадки с натягом          |  |  |  |
| A B C CD D E EF F FG G H  | JS      | JKMN                               | P R S T U V X Y Z ZA ZB ZC |  |  |  |
| Нижнее отклонение EI(+)   |         | Верхнее отклонение ES (-)          |                            |  |  |  |
| ОТВЕРСТИЯ                 |         |                                    |                            |  |  |  |

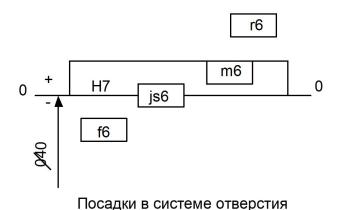
## Схема расположения основных отклонений валов









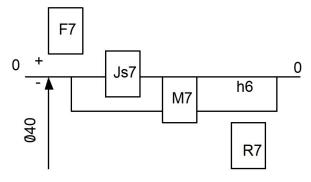

## 3-ий принцип



#### 3-й принцип. Предусмотрены системы образования посадок.



Посадки в системе отверстия – посадки, в которых требуемые зазоры и натяги получаются сочетанием различных полей допусков вала с полем допуска основного отверстия. Основное отверстие (H) – отверстие, нижнее отклонение которого равно нулю.






Посадки в системе вала – посадки, в которых требуемые зазоры и натяги получаются сочетанием различных полей допусков отверстий с полем допуска основного вала.

Основной вал (h) – вал, верхнее отклонение которого равно нулю.

Точные отверстия обрабатываются дорогостоящим режущим и калибровочным инструментом (зенкерами, развертками, протяжками и др.). Каждый такой инструмент применяют для обработки только одного конкретного размера с определенным полем допуска.



Посадки в системе вала

## 4-ый принцип



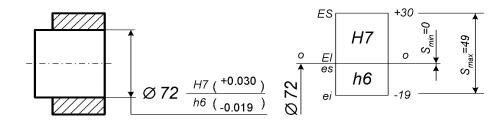




#### 4-й принцип.

#### Установлена нормальная температура.

Допуски и предельные отклонения, установленные в стандарте, относятся к размерам деталей при температуре +20°C.


## Обозначение посадок на чертежах



Нанесение предельных отклонений размеров на чертежах осуществляется в соответствий ЕСКД (единая система конструкторской документации). Предусмотрено три возможных способа указания отклонений:

- 1) числовыми значениями предельных отклонений, например, 72<sup>+0.030</sup>
- 2) условными обозначениями полей допусков, например, 72Н7;
- 3) условными обозначениями полей допусков с указанием в скобках числовых значений предельных отклонений, например, 72H7(+0.030).

Обозначение посадки на сборочном чертеже (в соответствии с ГОСТ 2.307-68):





#### Обязательно необходимо проставлять предельные отклонения:





- а) для размеров, не входящих в ряды нормальных линейных размеров по ГОСТ 6636-69;
- б) при назначении предельных отклонений ступенчатых размеров с несимметричным расположением допуска;
- в) при назначении предельных отклонений, условные обозначения которых не представлены в ГОСТ 25347-82, а устанавливаются в других стандартах (детали из пластмасс, шпоночные соединения, посадки шарикоподшипников и т. д.)

Предельные отклонения должны назначаться на все, указанные на чертеже размеры, включая и размеры несопрягаемых поверхностей.

Допускается не указывать предельные отклонения, определяющие зоны разной шероховатости, зоны разной термообработки, границы накатки и т. д.

## **VİTMO**

Лекция 3: Рекомендуемые посадки.

### Рекомендуемые посадки



В ЕСДП *рекомендуется* лишь 68 посадок, причем из них выделены к первоочередному применению <u>17</u> посадок в системе отверстия и <u>10</u> посадок в системе вала, образованных предпочтительных полей допусков.

Рекомендуемые посадки в системе отверстия при номинальных размерах от 1 до 500 мм

| Основное  | Посолия при основном отклононии отворотия                             |  |  |
|-----------|-----------------------------------------------------------------------|--|--|
| отверстие | Посадки при основном отклонении отверстия                             |  |  |
| H7        | H7/e8, H7/f6, H7/g6, H7/h6. H7/js6, H7/k6, H7/n6, H7/p6, H7/r6, H7/s6 |  |  |
| H8        | H8/d9, H8/e8, H8/h7, H8/h8,                                           |  |  |
| H9        | H9/d9                                                                 |  |  |
| H11       | H11/d11, H11/h11                                                      |  |  |

| Основной<br>вал | Посадки при основном отклонении вала      |
|-----------------|-------------------------------------------|
| h6              | F8/h6, H7/h6, Js7/h6, K7/h6, N7/h6, P7/h6 |
| h7              | H8/h7                                     |
| h8              | E9/h8, H8/h8                              |
| h11             | H11/h11                                   |

# Выбор технологического процесса, обеспечивающего требуемую точность изделия



Валы 5-го квалитета и отверстия 5 и 6 квалитетов получают шлифованием.



Валы 6 и 7 квалитетов и отверстия 7 и 8 квалитетов получают тонким точением или растачиванием, чистовым развертыванием, чистовым протягиванием.

Валы 8 и 9 квалитетов, отверстия 9 квалитета получают тонким строганием, тонким фрезерованием, получистовым развертыванием, шабрением, холодной штамповкой в вытяжных штампах.

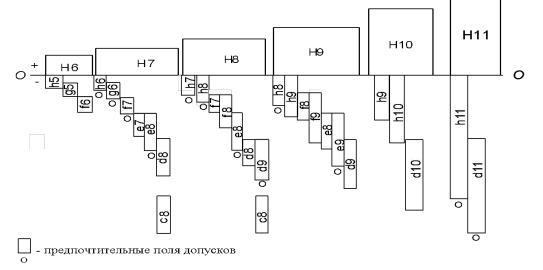
Валы и отверстия 10 квалитета получают чистовым зенкерованием и другими технологическими приемами, как для обеспечения 9-го квалитета точности.

Валы и отверстия 11 квалитета получают чистовым строганием, чистовым фрезерованием, чистовым обтачиванием, сверлением по кондуктору, литьем по выплавляемым моделям и другими технологическими приемами, как для обеспечения 10-го квалитета точности.

Валы и отверстия 12 и 13 квалитетов получают строганием, точением, чистовым долблением, черновым зенкерованием, получистовым растачиванием.

Валы и отверстия с 14 по 18 квалитеты получают черновой токарной обработкой, резкой ножницами и другими технологическими приемами.

## Рекомендации по выбору допусков и посадок соединений гладких элементов деталей. Посадки с //ТМО зазором



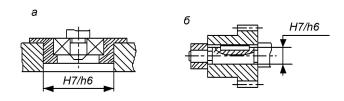

Посадки применяются *как в точных, так и в грубых* квалитетах.



Посадки предназначены для подвижных сопряжений, например для подшипников скольжения, а также для неподвижных сопряжений, например для обеспечения беспрепятственной сборки изделий, что особенно важно при автоматизации сборочных

операций.



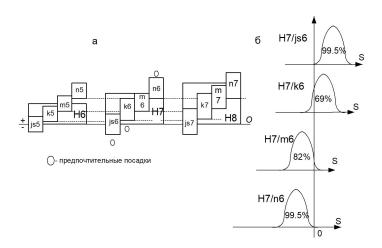

# Области применения некоторых рекомендуемых посадок с зазором



1) Посадки **H/h** - скользящие (квалитеты с 4 по 12).



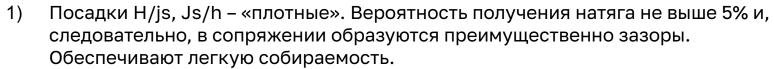





- 2) Посадки **H/g, G/h** «движения». Ооладают *минимальным* по сравнению с другими посадками *гарантированным зазором.* Такие посадки установлены *только в точных квалитетах* с 4-го по 7-й.
- 3) Посадки **H/f, F/h** «ходовые». Характеризуются *умеренным гарантированным зазором.*
- 4) Посадки *H/e, E/h* «легкоходовые». Обладают значительным гарантированным зазором, вдвое большим, чем у ходовых посадок.
- 5) Посадки **H/d, D/h** «широкоходовые». Характеризуются большим гарантированным зазором, позволяющим *компенсировать значительное отклонение расположения* сопрягаемых поверхностей и температурные деформации и обеспечить свободное перемещение деталей или их регулировку и сборку.

## Посадки переходные. Особенности посадок








Переходные посадки применяются только в точных квалитетах – с 4-го по 8-й и используются как центрирующие посадки. Предназначены для неподвижных, но разъемных соединений, так как обеспечивают легкую сборку и разборку соединения Переходные посадки требуют, как правило, дополнительного крепления соединяемых деталей (шпонками, штифтами, болтами и др.)

# Особенности применения некоторых рекомендуемых переходных посадок

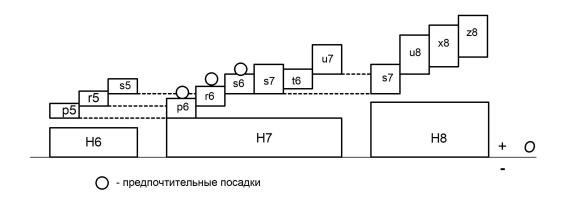








- 2) Посадки H/k, K/h «напряженные». Вероятность получения натяга у них от 24 до 68%, однако, из-за влияния отклонений формы, особенно при большой длине соединения, зазоры в большинстве случаев не ощущаются. Обеспечивают хорошее центрирование. Сборка и разборка производится без значительных усилий.
- 3) Посадки H/m, M/h «тугие». Вероятность получения натяга от 60 до 98%. Обладают высокой степенью центрирования. Сборка и разборка требуют значительных усилий и осуществляются только при ремонте.
- 4) Посадки H/n, N/h –«глухие». Вероятность получения натяга в пределах 88 100%. Обладают высокой степенью центрирования. Разбираются только при капитальном ремонте.


## Посадки с натягом. Особенности посадок



В сопряжении рассматриваемого вида образуются только натяги. На рисунке приведена в сокращенном варианте схема расположения полей допусков посадок с натягом в системе отверстия для размеров до 500 мм.







Посадки с натягом

# Особенности применения некоторых рекомендуемых посадок с натягом



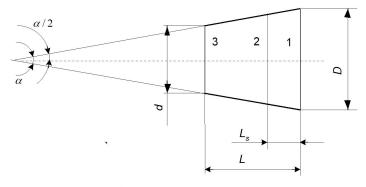
- 1) Посадки H/p, P/h «легкопрессовые». Имеют минимальный гарантированный натяг. Обладают высокой степенью центрирования. Применяются, как правило, с дополнительным креплением.
- 2) Посадки H/r, H/s, H/t, R/h, S/h, T/h «прессовые средние». Имеют умеренный гарантированный натяг. Применяются как с дополнительным креплением, так и без него.
- 3) Посадки H/u, H/x, H/z, U/h «прессовые тяжелые». Имеют большой гарантированный натяг. Предназначены для соединений, на которые воздействуют большие, в том числе и динамические нагрузки.

На чертежах деталей с многочисленными несопрягаемыми линейными и угловыми размерами допускается не указывать предельные отклонения непосредственно после каждого номинального размера, а давать их общей записью в технических требованиях согласно ГОСТ 23670-83.

### Гладкие конические соединения



Гладкие конические соединения (ГКС) широко *используются в конструкциях* машин, приборов, технологического оборудования, бытовой техники и др. При этом для оформления чертежей наряду с линейными размерами, используются *угловые размеры*. За единицу измерения углов принимают радианы, градусы, минуты и секунды. Важными *свойствами* конических соединений являются:


- самоцентрируемость деталей;
- регулируемость характера сопряжения;
- простота обеспечения герметичности соединения (обеспечивается индивидуальной притиркой деталей по коническим поверхностям; широко используется от изделий бытовой сантехники краны, до изделий машиностроения и транспорта всевозможные клапаны, иглы карбюраторов и др.).

## Основные элементы конуса









Параметрами конуса являются диаметры большого и малого оснований конуса, угол конуса (альфа), длина конуса (L) и конусность (C), определяемая как отношение разнсти диаметров конуса к длине конуса:

$$C = \frac{D - d}{L} = 2tg(\alpha/2)$$

- $\alpha$  угол между образующими
- $\alpha/2$  угол между образующей и осью конуса
- 1 большое основание конуса диаметром *D*
- 2 базовая плоскость, смещенная от (1) на  $L_s$
- 3 малое основание конуса диаметром *d*
- L длина конуса

## **ИТМО**

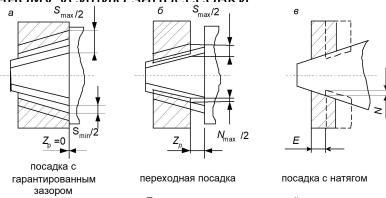




Различают три вида расположения поля допуска относительно номинального положения при образовании посадок конических соединений: смещение в плюс от номинала (+AT), смещение в минус (-AT) и симметричное смещение (+/- AT/2). Допуски углов для образования посадок гладких конических соединений определены

**ГОСТ 8908 – 81**. В таблицах ГОСТ и на чертежах числовую величину допуска задают путем различных обозначений *в угловой или линейной* мере: в радианах, градусах, длиной отрезка (катета), перпендикулярного меньшей стороне угла. Во всех этих выражениях допуски разделены на 17 *степеней точности*. По *способу фиксации* взаимного осевого положения конусов различают следующие *посадки*:

### Посадки конических соединений




а) с фиксацией путем совмещения конструктивных элементов (до совмещения базовых плоскостей);



X

- б) с фиксацией по заданному осевому расстоянию между базовыми плоскостями;
- в) с фиксацией по заданному осевому смещению от положения в момент соприкосновения;
- г) с фиксацией по заданному усилию запрессовки  $S_{\max/2}$



Посадки конических соединений

### Применение



Неподвижные конические соединения применяют:





- 1) для передачи крутящего момента;
- 2) плотные соединения для создания газо- водо- маслонепроницаемости и для центрирования;
- 3) подвижные соединения для получения постоянного зазора, регулируемого за счет взаимного осевого перемещения деталей.

По построению сопрягаемых поверхностей (конструктивные параметры) конусы инструментов разделяются на три основные группы:

- 1) конусы Морзе (конусность близка к 1 : 20);
- 2) конусы метрические (конусность равна 1 : 20);
- 3) конусы, применяемые в станках с ЧПУ (конусность 7 : 24).

# Спасибо за внимание!

ITSMOre than a UNIVERSITY