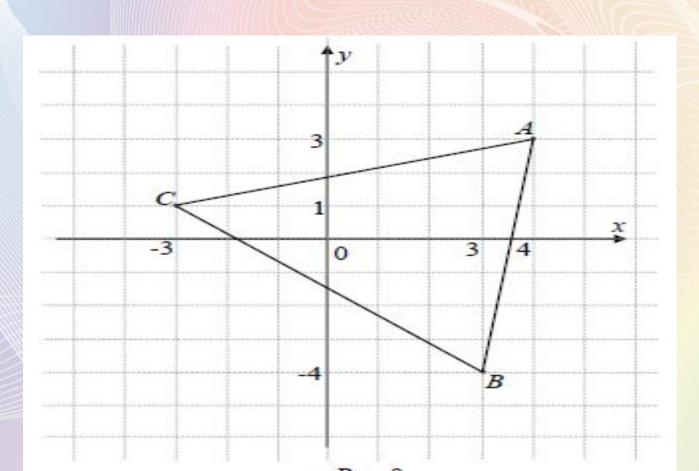
МЕТОДЫ ОПТИМАЛЬНЫХ РЕШЕНИЙ

Задача 1

Записать с помощью неравенств область, представляющую собой в плоскости хОу многоугольник с вершинами A(4; 3), B(3; 4), C(3; 1).

Решение:

Построим многоугольник с заданными вершинами в плоскости *хОу*



Запишем уравнения прямых, которые ограничивают область. Для каждой прямой известны координаты двух точек, которые лежат на искомых линиях, поэтому по формуле (3.1) составим уравнения прямых, проходящих через две заданные точки

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1},\tag{3.1}$$

где $(x_1; y_1)$ и $(x_2; y_2)$ соответствующие координаты точек.

AB:
$$\frac{x-4}{3-4} = \frac{y-3}{-4-3}$$
, AC: $\frac{x-4}{-3-4} = \frac{y-3}{1-3}$, BC: $\frac{x-3}{-3-3} = \frac{y+4}{1+4}$,

откуда после преобразований записываем уравнения сторон многоугольника

AB:
$$7x-y-25=0$$
, AC: $2x-7y+13=0$, BC: $5x+6y+9=0$.

Каждое уравнение заменим на соответствующее неравенство так, чтобы оно определяло ту полуплоскость относительно этой прямой, в которой лежит многоугольник

$$\begin{cases} 7x - y - 25 \le 0, \\ 2x - 7y + 13 \ge 0, \text{ или } \begin{cases} 7x - y \le 25, \\ -2x + 7y \le 13, \\ -5x - 6y \le 9. \end{cases}$$

Omeem:
$$\begin{cases} 7x - y \le 25, \\ -2x + 7y \le 13, \\ -5x - 6y \le 9. \end{cases}$$

Задача 2

Частное предприятие планирует выпускать продукцию двух видов A_1 и A_2 , для производства которой необходимо сырье трех типов. Запасы сырья каждого вида на предприятии; нормы расхода сырья на изготовление единицы изделия каждого вида; прибыль от реализации единицы изделия каждого вида даны в таблице

Тип сырья	Нормы расхода сыр			
	A_1	A_2	Запас сырья, кг	
1-й	4	4	300 122	
2-й	2	1		
3-й	3	2	192	
Прибыль, ден.ед.	60	30	Ų.	

Требуется составить план производства изделий, обеспечивающий максимальную прибыль частного предприятия от реализации продукции, решив задачу геометрическим методом.

Решение

Составим математическую модель данной задачи. Предположим, что предприятие изготовит x_1 изделий вида A_1 и x_2 изделий вида A_2 . Поскольку производст-

во продукции ограничено имеющимся в распоряжении предприятия сырьем каждого типа, то должны выполняться неравенства

$$\begin{cases} 4x_1 + 4x_2 \le 300, \\ 2x_1 + x_2 \le 122, \\ 3x_1 + 2x_2 \le 192. \end{cases}$$

Количество изготовляемых изделий не может быть отрицательным и дробным, поэтому

$$x_1 \ge 0, x_2 \ge 0,$$

 x_1, x_2 – целые.

Общая прибыль от реализации x_1 изделий вида A_1 и x_2 изделий вида A_2 составит

$$F = 60x_1 + 30x_2.$$

Таким образом, получаем следующую математическую задачу: среди всех целых неотрицательных решений данной системы линейных неравенств требуется найти такие, при котором функция F принимает максимальное значение.

Найдем решение задачи, используя ее геометрическую интерпретацию. Определим многоугольник решений. Для этого в неравенствах заменим знаки неравенств на знаки точных равенств и построим соответствующие прямые:

$$l_1: 4x_1 + 4x_2 = 300 \Rightarrow \frac{x_1}{75} + \frac{x_2}{75} = 1;$$

$$l_2: 2x_1 + x_2 = 122 \Rightarrow \frac{x_1}{61} + \frac{x_2}{122} = 1;$$

$$l_3: 3x_1 + 2x_2 = 192 \Rightarrow \frac{x_1}{64} + \frac{x_2}{96} = 1;$$

$$l_4: x_1 = 0;$$

$$l_5: x_2 = 0.$$

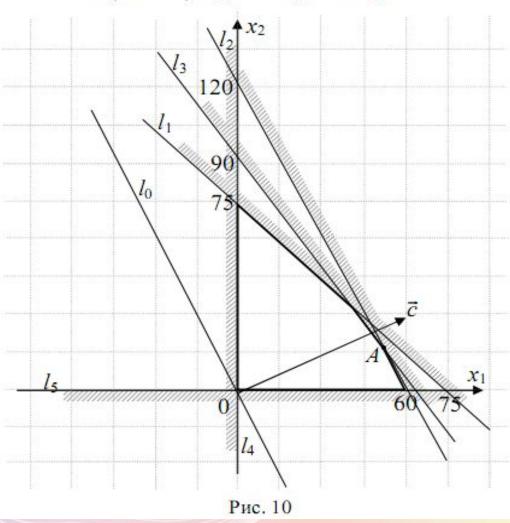
Каждая из построенных прямых делит плоскость на две полуплоскости. Координаты точек одной полуплоскости удовлетворяют исходному неравенству, а другой – нет. Чтобы определить искомую полуплоскость, нужно взять какуюнибудь точку, принадлежащую одной из полуплоскостей, и проверить, удовлетворяют ли ее координаты данному неравенству. Если координаты взятой точки удовлетворяют данному неравенству, то искомой является та полуплоскость, которой принадлежит эта точка, в противном случае – другая полуплоскость (отметим на рисунке штриховкой).

Найдем полуплоскость, определяемую каждым неравенством системы ограничений задачи. Во всех случаях возьмем точку с координатами (1;1)

$$4 \cdot 1 + 4 \cdot 1 \le 300$$
 – верно;
 $2 \cdot 1 + 1 \le 122$ – верно;
 $3 \cdot 1 + 2 \cdot 1 \le 192$ – верно;
 $1 \ge 0$ – верно;
 $1 \ge 0$ – верно;

Таким образом, относительно каждой прямой искомыми являются полуплоскости, в которых лежит точка (1;1). Пересечение этих полуплоскостей и определяет многоугольник решений данной задачи (пятиугольник, ограниченный штриховкой). Строим вектор цели \bar{c} , координаты которого есть коэффициенты при неизвестных в целевой функции F, и прямую нулевого уровня l_0 , причем $l_0 \perp \bar{c}$ (рис.10)

$$\vec{c}$$
 (60;30); l_0 : $60x_1 + 30x_2 = 0$.



Перемешаем прямую l_0 в направлении вектора \vec{c} до последней общей точки ее с многоугольником решений – точки A. Если координаты этой точки целые, то они и определяют план выпуска изделий A_1 и A_2 , при котором прибыль от их реализации является максимальной, иначе – целые координаты точки, ближайшей к A по направлению вектора \vec{c} .

Найдем координаты точки A как точки пересечения прямых l_2 и l_3 :

$$\begin{cases} 2x_1 + x_2 = 122, \\ 3x_1 + 2x_2 = 192; \end{cases} \Leftrightarrow \begin{cases} -x_1 = -58, \\ 3x_1 + 2x_2 = 192; \end{cases} \Leftrightarrow \begin{cases} x_1^* = 52, \\ x_2^* = 18. \end{cases}$$

Следовательно, если предприятие изготовит 52 изделия вида A_1 и 18 изделий вида A_2 , то оно получит максимальную прибыль

$$F_{\text{max}} = 60 \cdot 52 + 30 \cdot 18 = 3660$$
 ден.ед.

Ответ: для получения максимальной прибыли от реализации продукции 3660 ден.ед. частному предприятию необходимо изготовить 52 изделия вида A_1 и 18 изделий вида A_2 .

Задача 3

Решить задачу линейного программирования графическим методом

$$F = -x_1 - x_2 + x_3 + 3x_4 + 7x_5 \rightarrow \min,$$

$$\begin{cases}
-x_1 + x_2 + x_3 + 2x_4 - 3x_5 = 4, \\
x_1 + x_2 + 4x_3 + x_4 - 8x_5 = 3, \\
x_2 + x_3 - 4x_5 = -4, \\
x_j \ge 0, \quad j = \overline{1;5}.
\end{cases}$$

Решение

Методом Жордана-Гаусса приведем систему уравнений-ограничений задачи к равносильной

$$A|B = \begin{bmatrix} \langle -1 \rangle & 1 & 1 & 2 & -3 & | & 4 \\ 1 & 1 & 4 & 1 & -8 & | & 3 \\ 0 & 1 & 1 & 0 & -4 & | & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -1 & -2 & 3 & | & -4 \\ 0 & 2 & 5 & 3 & -11 & | & 7 \\ 0 & \langle 1 \rangle & 1 & 0 & -4 & | & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -2 & -1 & | & -8 \\ 0 & 0 & \langle 3 \rangle & 3 & -3 & | & 15 \\ 0 & 1 & 1 & 0 & -4 & | & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -2 & -1 & | & -8 \\ 0 & 0 & 1 & 1 & -1 & | & 5 \\ 0 & 1 & 0 & -1 & -3 & | & -9 \end{bmatrix}.$$

Поскольку система совместна ($r = \text{rang } A = \text{rang } A \mid B = 3$) и выполняется условие $n - r \le 2$, где n - число неизвестных системы ограничений, то данная задача линейного программирования может быть решена графическим методом.

На основе последней матрицы запишем систему в следующем виде

$$\begin{cases} x_1 & -2x_4 - x_5 = -8, \\ x_3 + x_4 - x_5 = 5, \\ x_2 & -x_4 - 3x_5 = -9. \end{cases}$$
 (*)

Выразим в системе (*) базисные неизвестные x_1 , x_2 , x_3 через свободные

$$x_4, x_5$$

$$\begin{cases} x_1 = -8 + 2x_4 + x_5, \\ x_3 = 5 - x_4 + x_5, \\ x_2 = -9 + x_4 + 3x_5. \end{cases}$$
 (**)

Исключим базисные переменные из целевой функции

$$F = -\left(-8 + 2x_4 + x_5\right) - \left(-9 + x_4 + 3x_5\right) + 5 - x_4 + x_5 + 3x_4 + 7x_5 = 22 - x_4 + 4x_5.$$

По условию $x_j \ge 0$, j=1;5, поэтому в преобразованных уравнениях-ограничениях (*) отбросим базисные неизвестные и заменим знаки равенства знаками неравенства « \le », получим вспомогательную задачу линейного программирования с двумя переменными

$$F = 22 - x_4 + 4x_5 \to \min,$$

$$\begin{cases} 2x_4 + x_5 \ge 8, \\ x_4 - x_5 \le 5, \\ x_4 + 3x_5 \ge 9, \end{cases}$$

$$x_4 \ge 0, \ x_5 \ge 0.$$

Решим задачу графическим методом. Свободный член в целевой функции 22 на отыскание оптимального решения не влияет и учитывается только при вычислении значения целевой функции.

Определим многоугольник решений

$$l_1: 2x_4 + x_5 = 8, \frac{x_4}{4} + \frac{x_5}{8} = 1;$$

$$l_2: x_4 - x_5 = 5; \frac{x_4}{5} + \frac{x_5}{-5} = 1;$$

$$l_3: x_4 + 3x_5 = 9; \frac{x_4}{9} + \frac{x_5}{3} = 1;$$

$$l_4: x_4 = 0;$$

$$l_5: x_5 = 0.$$

Найдем полуплоскость, определяемую каждым неравенством. Возьмем точку с координатами (5;3) для всех неравенств

$$2 \cdot 5 + 3 \ge 8$$
 – верно; $5 \ge 0$ – верно;

Значит, относительно каждой прямой искомыми являются полуплоскости, в которых лежит точка (5;3). Пересечение этих полуплоскостей является многоугольником решений задачи (рис. 11).

Построим вектор цели $\vec{c}(-1;4)$ и прямую нулевого уровня $l_0: -x_4+4x_5=0$. Переместим прямую l_0 в направлении противоположном вектору \vec{c} до последней общей точки ее с многоугольником решений – точки A. Координаты этой точки определяют оптимальное решение вспомогательной задачи.

$$A = l_2 \cap l_3$$
:

$$\begin{cases} x_4 - x_5 = 5, \\ x_4 + 3x_5 = 9; \end{cases} \Leftrightarrow \begin{cases} x_4 - x_5 = 5, \\ 4x_5 = 4; \end{cases} \Leftrightarrow \begin{cases} x_4^* = 6, \\ x_5^* = 1. \end{cases}$$

Вычислим минимальное значение целевой функции

$$F_{\min} = 22 - 6 + 4 \cdot 1 = 20$$
.

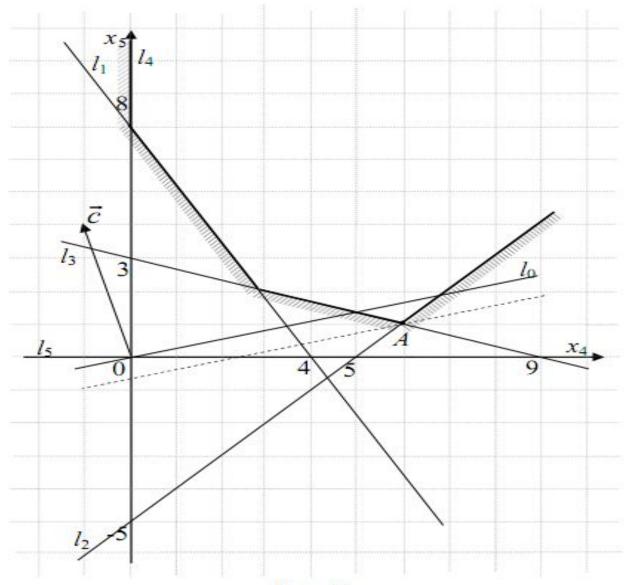


Рис. 11

Подставим найденные значения x_4^* и x_5^* в систему (**) и вычислим значения остальных переменных

$$\begin{cases} x_1 = -8 + 2 \cdot 6 + 1, \\ x_3 = 5 - 6 + 1, \\ x_2 = -9 + 6 + 3 \cdot 1; \end{cases} \Leftrightarrow \begin{cases} x_1 = 5, \\ x_3 = 0, \\ x_2 = 0. \end{cases}$$

Таким образом, оптимальное решение исходной задачи:

$$X^* = (5;0;0;6;1).$$

Ответ: $F_{\min} = 20$ при $X^* = (5;0;0;6;1)$.

Задача 4

На три базы A_i , i=1;3 поступил однородный товар, который требуется перевезти в магазины B_j , $j=\overline{1;5}$. Матрица тарифов перевозок (c_{ij}) между базами и магазинами, запасы товаров (a_i) на базах и потребности в товарах (b_j) для магазинов заданы таблицей:

Базы	B_1	B_2	B_3	B_4	B_5	Запасы а
A_1	2	3	4	5	1	430
A_2	2	4	3	6	7	320
A_3	6	5	8	5	4	380
Потребности b_j	190	200	220	210	150	

Спланировать план перевозок таким образом, чтобы общая их стоимость была минимальной. Найдем суммарные запасы поставщиков (баз) и суммарные запросы потребителей (магазинов)

$$\sum_{i=1}^{3} a_i = 430 + 320 + 380 = 1130,$$

$$\sum_{j=1}^{5} b_j = 190 + 200 + 220 + 210 + 150 = 970.$$

Поскольку $\sum_{i=1}^{3} a_i > \sum_{j=1}^{5} b_j$, то данная задача с неправильным балансом. Необ-

ходимо ввести шестого, фиктивного потребителя с потребностями

$$b_6 = 1130 - 970 = 160$$

и нулевыми стоимостями перевозок единиц товара:

Базы	B_1	B_2	B_3	B_4	B_5	B_6	Запасы a_i
A_1	2	3	4	5	1	0	430
A_2	2	4	3	6	7	0	320
A_3	6	5	8	5	4	0	380
Потребности b_j	190	200	220	210	150	160	

Теперь $\sum_{i=1}^{3} a_i = \sum_{j=1}^{5} b_j$, значит, выполняется необходимое и достаточное усло-

вие разрешимости задачи.

Найдем начальное опорное решение методом минимальной стоимости (стоимости перевозок товара фиктивному потребителю рассматриваются в последнюю очередь)

$a_i b_i$	190	200	220	210	150	160
430	190	90	4	5	150	0
320	2	100	220 3	6	7	0
380	6	10	8	210	4	160

Полученное решение X^1 имеет m+n-1=3+6-1=8 базисных переменных. Вычислим значение целевой функции на этом решении

$$F = 2 \cdot 190 + 3 \cdot 90 + 1 \cdot 150 + 4 \cdot 100 + 3 \cdot 220 + 5 \cdot 10 + 5 \cdot 210 + 0 \cdot 160 = 2960$$
.

Если допустимое решение транспортной задачи является оптимальным, то существуют потенциалы поставщиков u_i , i=1;3 и потребителей v_j , j=1;6, удовлетворяющие условиям

$$u_i + v_j = c_{ij} \operatorname{пр} u x_{ij} > 0,$$
 (i)

$$u_i + v_j \le c_{ij} \text{ при } x_{ij} = 0. \tag{ii}$$

Определим потенциалы u_i и v_j , используя условия (i), согласно которым в каждой занятой опорным решением клетке таблицы транспортной задачи сумма потенциалов равна стоимости перевозок. Запишем систему и найдем ее решение

$$\begin{cases} u_1 + v_1 = 2, & u_1 = 0, \\ u_1 + v_2 = 3, & v_1 = 2, \\ u_1 + v_2 = 1, & v_2 = 3, \\ u_2 + v_2 = 4, & v_5 = 1, \\ u_2 + v_3 = 3, & u_2 = 1, \\ u_3 + v_2 = 5, & u_3 = 2, \\ u_3 + v_4 = 5, & u_3 = 2, \\ u_3 + v_6 = 0; & v_4 = 3, \\ v_6 = -2. \end{cases}$$

Система неопределенная, т.к. состоит из восьми уравнений и имеет девять переменных, поэтому потенциалу u_1 задали значение произвольно: $u_1 = 0$.

Значения потенциалов запишем в таблицу рядом с запасами или запросами соответствующих поставщиков и потребителей.

X	2	$v_1 = 2$	$v_2 = 3$	$v_3 = 2$	$v_4 = 3$	$v_5 = 1$	$v_6 = -2$
	$a_i b_i$	190	200	220	210	150	160
$u_1 = 0$	430	- <u>190</u>	90 + 3	4 +	5 +	150	0 +
$u_2 = 1$	320	+ 2	100-	220	6	7	0
$u_3 = 2$	380	6 +	10	8 +	210	4	160

Для всех незаполненных клеток таблицы проверим условия (ii)

$$u_1 + v_3 \le 4$$
, $u_2 + v_1 \le 2$, $u_3 + v_1 \le 6$, $u_1 + v_4 \le 5$, $u_2 + v_4 \le 6$, $u_3 + v_3 \le 8$, $u_1 + v_6 \le 0$, $u_2 + v_6 \le 0$, $u_3 + v_5 \le 4$.

Если неравенство верное, то в соответствующей клетке в правом нижнем углу поставим знак «+», иначе – запишем число Δ_{ii} , равное

$$\Delta_{ij} = u_i + v_j - c_{ij}.$$

Итак, начальное опорное решение не является оптимальным, поскольку для клетки (2;1) условие (ii) не выполняется, $\Delta_{21} = 1$.

Перейдем к новому опорному решению. Для клетки (2;1) построим цикл (если такого типа клеток несколько, то выбираем ту, в которой наибольшее значение Δ_{ij}): (2;1), (1;1), (1;2), (2;2). В угловых точках цикла расставим поочередно знаки «+» и «-», начиная с «+» в клетке (2;1). Величина груза Θ , перераспределяемого по циклу равна наименьшей из перевозок в клетках цикла, отмеченных знаком «-»

$$\Theta = \min\{190;100\} = 100.$$

В клетки цикла, отмеченные знаком «+» добавляется груз Θ , из клеток, отмеченных знаком «-», убавляется такой же по величине груз. Так, осуществляя сдвиг по циклу на величину Θ , получим второе опорное решение X^2

	<u> </u>	$v_1 = 2$	$v_2 = 3$	$v_3 = 3$	$v_4 = 3$	$v_5 = 1$	$v_6 = -2$
	$a_i b_j$	190	200	220	210	150	160
$u_1 = 0$	430	90	190	4	5 +	150	0 +
$u_2 = 0$	320	100	4	220	6	7 +	0 +
$u_3 = 2$	380	6 +	10 5	8 +	210 5	4	160

Проверим это решение на оптимальность. Для чего, аналогично предыдущему решению, найдем потенциалы и проверим выполнение условий (ii):

$$\begin{cases} u_1 + v_1 = 2, \\ u_1 + v_2 = 3, \\ u_1 + v_5 = 1, \\ u_2 + v_1 = 2, \\ u_2 + v_3 = 3, \\ u_3 + v_2 = 5, \\ u_3 + v_6 = 0; \end{cases} v_1 = 0, \qquad u_1 + v_3 \le 4, \\ v_1 = 2, \qquad u_1 + v_4 \le 5, \\ v_2 = 3, \qquad u_1 + v_6 \le 0, \\ u_2 + v_2 \le 4, \qquad u_2 + v_2 \le 4, \\ u_2 = 0, \qquad u_2 + v_4 \le 6, \\ u_3 = 3, \qquad u_2 + v_5 \le 7, \\ u_3 = 2, \qquad u_3 + v_1 \le 6, \\ v_4 = 3, \qquad u_3 + v_1 \le 6, \\ u_3 + v_3 \le 8, \\ u_3 + v_5 \le 4. \end{cases}$$

Условия (i) и (ii) выполняются, значит, второе опорное решение является оптимальным. Вычислим значение целевой функции на этом решении

$$F = 2 \cdot 90 + 3 \cdot 190 + 1 \cdot 150 + 2 \cdot 100 + 3 \cdot 220 + 5 \cdot 10 + 5 \cdot 210 + 0 \cdot 160 = 2950$$
.

Ответ: общая стоимость перевозок составит $F_{\min} = 2950$ ден.ед. при плане

перевозок
$$X^* = \begin{pmatrix} 90 & 190 & 0 & 0 & 150 \\ 100 & 0 & 220 & 0 & 0 \\ 0 & 10 & 0 & 210 & 0 \end{pmatrix}$$
, при этом на третей базе остает-

ся 160 единиц товара.