Finite automata

Irina Prosvirnina

e Closure properties of regular languages
* Pumping lemma



Theorem 1

The class of regular languages is closed under union,
intersection, subtraction, complementation,
concatenation, Kleene closure and reversal.

Proof.

The idea is to build a DFA for the union of two
languages by combining the two DFA’s into one such
that, at each step, the new DFA would keep track of the
computation paths of both DFA's.



et M; = (Q4, %, 61, qy, F1) be DFA to accept
L(My),letM, = (Q,,%,5,,q, F,) be DFA to accept
L(M,).



@onsider a product automaton M = M; X M,.

The state set Q = Q4 X Q, is the cross product of the
state sets of M; and M,.

The initial state of M is (qg, q).

At each state (ql-, qj) in Q, we simulate both
computations of M; and M, in parallel by

o ((Cli»CIj)»a) = (6,(q1,),8,(q;,a)).



Phe set of final states of M:

F=(F; XQ)U(Q XF).
From the above description, it is clear that M accepts
the union of two languages L(M,) U L(M,).



Phe above method can also be applied to the problems
of finding the intersections or the differences of two
languages which are accepted by DFA’s.

For the intersection of two regular languages we need
to take F; X F, as F and for the difference of two
languages we need to take F; X (Q, — F,) as F.



et M = (Q, %, §, qy, F) be DFA to accept the language
L(M).

Then DFA (Q, %, 8, qy, Q — F) accepts the
complementation of the language L(M).



leet’s show how for given NFA’s M, and M, to construct
the NFA accepting the concatenation L(M,) - L(M,) of
two languages and Kleene closure L(M,)* of the
language L(M,).

Let’s begin with concatenation of two regular
languages.



et M; = (Q4,%, 84, q5, F1) be an NFA to accept L(M,),
let M, = (Q,,%,68,,q5, F,) be an NFA to accept L(M,).

We construct an NFA M such that
L(M) =L(M,) - L(M,).
We make a copy of each of M; and M,.



Phen, we let the initial state g3 of M; be the initial state

of M and let the set F of the final states of M be equal
to F5.

We also add an e-move from each state g in F; to the
initial state g¢ of M,.



We construct an NFA M such that

L(M) =L(My) - L(M,).

Then, we let the initial state gj of M; be the initial state
of M and let the set F of the final states of M be equal
to F;.

We also add an e-move from each state g in F; to the
initial state q§ of M,.




et M; = (Q4, %, 81, g, F1) be NFA to accept the
language L(M,).
Let’s construct an NFA M such that L(M) = L(M,)".

We construct M by adding a new initial state s and a
unique final state f.



Phen
M, and an e-move from each g; € F; to the new final

state

We a
initia

, we add an e-move from s to the initial state g, of

f.

so add, from each state g; € F;, an e-move to the
state g, of Mj;.

Final

y, we add an e-move from the initial state s to the

new final state f (so that the empty string ¢ is
accepted).



Kleene closure of an NFA.




¥ L is regular language then LR is regular language too:
PR = @,

{e}f =,

(AB)R = BRAKR,

(AU B)R = AR U BX,

(A*)R — (AR)*

n



In the following examples a language is given and we
show how to construct a DFA or a NFA accepting the
language.



xample 1

The set of all binary strings having a substring 00 or
ending with 01.

This language is the union of two languges
(0+1)*00(0+ 1)*and (0 + 1)*01.




BFA to accept (0 + 1)*00(0 + 1)*.




BFA to accept (0 + 1)*01.




OFA to the set of all binary strings having a substring 00
or ending with 01.




xample 2

The set of all binary strings having a substring 00 and
ending with 01.

This language is the intersection of two languges
(04 1)*00(0+ 1)* and (0 + 1)*01.

The transition diagram of the resulting DFA is just like
that of example 1, except that the final set consists of

only one state (g5, g,).







xample 3
The set of all binary strings having a substring 00 but
not ending with 01.

This language is the difference of language

(04+ 1)*00(0 4+ 1)* minus language (0 + 1)*01.

The transition diagram of the resulting DFA is just like
that of example 1, except that the final set consists of

two states (g2, qo) and (g2, q1).




Bxample 4

The set L of all binary strings in which every block of
four consecutive symbols contains a substring 01.

Solution.

The condition “every block of four consecutive symbols
contains a substring 01” is a global condition, which
appears difficult to verify.

By considering the complement L, we turn this
condition into a simpler local condition: L contains

binary strings with a substring 0000,1000,1100,1110
or 1111.



We first construct a DFA accepting L and then change
all final states into nonfinal states and all nonfinal
states into final states.

A solution is shown in the following figure.






Mot all languages are regular.

We introduce necessary condition for regularity of
languages which can be used to prove that a language
is non regular.

In the following, we write, for any string v™ to denote
the set {v*}.



Bumping lemma. If a language L is accepted by a DFA

M with s states, then every string x in L with |x| = s,
can be written as: x = uvw such that v # € and
uv'w € L.

Proof. Consider the transition diagram of M.

Since x € L, the computation path m of x starts from
the initial state g, and ends at a final state q.

The concatenation of the labels over the path 7 is
exactly the string x.



Phe path  has exactly |x| edges because each edge is
labeled by a symbol.

Thus, the path m contains a vertex sequence of |x| + 1
elements.

Since |x| = s, some state g; occurs more than once in
the sequence.



Since |x| = s, some state g; occurs more than once in
the sequence.




Break the path m into three subpaths at the first and
second occurrences of g;.




Phat is, the first subpath is from state g, to the first
occurrence of q;.




Phe second subpath is a cycle from the first g; to the
second q;.




Phe third subpath is from the second g; to q;.




leet ©, v and w be the concatenations of the labels of
the three subpaths, respectively. Then, x = uvw and
V # E.




Since v is associated with a cycle, we also have
uv*w C L. (E.g., uv®w € L because §(qq, uv?w) =

— S(qi,vvw) — 5(qi,UW) — 6(quw) — qf-).




Now, for a given language L, if we can prove that the
necessary condition of the pumping lemma does not
hold with respect to any s > 0, then L is not regular.



xample 1

L = {0P| p —is a prime} is not a regular language.



