
Advanced
Code Challenge

Let’s go!
So much fun!

Create a script called Spawner
Spawner script level 1

- Have the spawner instantiate prefab -GameObjects every frame.
A standard Cube or some other primitive is fine.

Spawner / prepare to instantiate by the manager
Spawner script level 2

- Move the instantiating to a separate method that is public. Let’s call it Spawn.
- Create a variable like ‘numberSpawned’ that tracks the amount of objects

instantiated.

Point is to be able to call instantiating from another script.

Create a script called SpawnManager
SpawnManager script level 1

- Have a reference to your Spawner and call its Spawn -method in every update.

The point is to move the spawning logics from Spawner to SpawnManager.

SpawnManager / spawn timer
SpawnManager script level 2

- Create a timer for spawning, where you can set the delay between spawns in
seconds. You could start with half a second.

Point is to be able to control spawning speed from inspector and not rely on the
fps of the machine.

Spawner / spawn position and parent
Spawner script level 3

- Make the spawned prefabs instantiate where this spawner GameObject’s position
is. Make sure it’s on a separate object from the SpawnManager.

- Make the spawned prefabs childs of this GameObject.

The point is to have spawned objects appear where this GameObject is.

Spawner / make spawned objects jump
Spawner script level 4

- Add a Rigidbody to your prefab -GameObject.
- When this GameObject is spawned, tell the Rigidbody to jump by something like:

AddForce(Vector3.up * jumpForce, ForceMode.Impulse)

- You might want to add a plane or some kind of floor at this point.

The point is to have fun.

SpawnManager / support multiple spawners
SpawnManager script level 3

- Prepare your SpawnManager for controlling multiple spawners: change the
reference to your Spawner into a list of Spawners.

- Change your Spawn -calls to call on every spawner. (hint: use loop)
- Make sure your spawning still works, you can drag your Spawner -script manually.

Point is to support multiple spawners.

Spawner / random chance
Spawner script level 5

- Add a random chance of 20% for Spawners to instantiate.

The point is to add randomness.

SpawnManager / Singleton
SpawnManager script level 4

- Create a singleton -reference to the SpawnManager in the script (hint: static).

The point is to find the manager with any script in the scene.

SpawnManager / subscribe 1
SpawnManager script level 5

- Create a Subscribe -method in the script that accepts a Spawner as a parameter
and then adds the GameObject to the list of Spawners.

- Clear the list of manually assigned Spawners. You may need to initialize the list in
Awake with spawners = new List<Spawner>()

Prepare to accept subscriptions from managed scripts.

Spawner / subscribe 2
Spawner script level 6

- Make this Spawner subscribe to SpawnManager automatically. Make sure this is
after the manager initializes its singleton.

- Duplicate and scatter 6 Spawner -GameObjects around your scene.
- Make sure they all start spawning without you having to assign them on the

SpawnManager list that should be empty now.

Complete the subscription from this end.

SpawnManager / spawn cap
SpawnManager script level 6

- Make your Spawner / ‘numberSpawned’ a static member so every spawn by any
spawner is recorded.

- Create a variable for SpawnManager that controls the maximum amount of
spawned objects. When it’s reached (hint: read from Spawner), no more is
spawned.

Limit your spawned objects.

UI
UI script level 1

- Create UI where you have a button that starts and stops the spawning.

Control your spawns.

UI
UI script level 2

- Create UI that shows the amount of cubes spawned.

Observe your spawns.

Spawner / random color
Spawner script level 7

- Randomize your spawned object’s color.

It’s fun!

SpawnManager / events
SpawnManager script level 7

- Refactor your code to use events (like Actions) instead of subscribing to list.

Events

UI
UI script level 3

- Make the binding happen in runtime (subscribe to event or think of another way)

Automatic binding FTW

YOU’RE DONE!
GRADING

Your grade is Mathf.Clamp(levels/2 -2, 0f, 5f)

So count every “level” you could complete, divide by 2 and -2.

Max score is 6,5.

If you didn’t get over 0, you didn’t
pass and need to try again later.

DISCLAIMER:

I reserve the right to change the

formula after the results come in.

