СОВЕРШЕНСТВОВАНИЕ МЕТОДОВ ГИГИЕНИЧЕСКОГО НОРМИРОВАНИЯ ДЕЗИНФЕКЦИОННЫХ СРЕДСТВ С ЦЕЛЬЮ СНИЖЕНИЯ РИСКА ИХ ТОКСИЧЕСКОГО ВОЗДЕЙСТВИЯ

Зав. лаборатории токсикологии дезсредств, к.м.н. М.В.Бидевкина В настоящее время одним из требований к безопасности применения дезинфекционных средств является наличие установленных гигиенических нормативов для действующих веществ (ДВ) в различных видах окружающей среды:

- в воздухе рабочей зоны,
- в атмосферном воздухе населенных мест,
- воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования,
 - почве.

Гигиенические нормативы действующих веществ (ПДК, ОБУВ, ОДУ), как правило, используются для проведения мониторинга за их содержанием во внешней среде с целью профилактики их вредного воздействия на организм.

Гигиенические нормативы ДВ в воздухе рабочей зоны необходимы для разработки безопасных режимов проведения дезинфекционных, дезинсекционных и дератизационных мероприятий на различных объектах, включая установление времени проветривания после использования дезсредств, решение вопроса о возможности их применения в присутствии людей.

Гигиенические нормативы ДВ, установленные для атмосферного воздуха, являются основными критериями безопасности при проведении противоклещевых обработок природных биотопов, установлении норм расхода инсектицидных средств, применяемых в быту.

Принимая во внимание широкую область применения дезинфекционных средств: лечебнопрофилактические учреждения, детские учреждения, предприятия коммунально-бытового обслуживания, учреждения образования, культуры, отдыха и т.п., разработка современных методов установления ПДК и ОБУВ является актуальной задачей.

В настоящее время при разработке ПДК и ОБУВ веществ во всех средах широко используются различные токсикометрические показатели (CL50, DL50, Limac, Limolf, ПДК и ОБУВ).

Накопленный опыт установления ПДК вредных веществ в воздухе рабочей зоны показал, что надежность прогнозирования возрастает при использовании в качестве основы для расчетов ПДК порогов острого токсического действия.

На основе определения порогов острого действия разработан метод установления ПДК избирательно действующих раздражающих веществ в воздухе рабочей зоны. Предложены формулы расчета ОБУВ для органических веществ, Limac которых установлен по изменению поведенческих реакций [Н.Г. Иванов, 1980, 2002 гг.].

Целью данной работы являлась разработка метода гигиенического нормирования ДВ дезсредств и других химических соединений в воздухе рабочей зоны и атмосферном воздухе населенных мест на основании установления характера биологического действия в краткосрочном эксперименте и с учетом гигиенической значимости регистрируемых изменений показателей интоксикации.

Для этого нами был создан банк данных по токсикометрии веществ, в котором, использовались материалы Проблемной комиссии «Научные основы медицины труда» РАМН (свыше 1000 веществ), а также результаты исследований изученных нами около 100 химических соединений с целью обоснования их ПДК/ОБУВ в воздухе рабочей зоны. Среди веществ, для которых были установлены гигиенические нормативы:

- 20% составляют вещества с избирательным раздражающим действием;
- 9 % с преимущественным влиянием на нервную систему;
- по 2% приходится на вещества с гепатотоксическим, нефротоксическим или антимикробным действием,
- 27% веществ обладают политропным действием, оказывая влияние на функцию печени, почек, нервной и дыхательной системы.

ТАБЛИЦА1.ХИМИЧЕСКИЕ ГРУППЫ ДВ ДЕЗИНФЕКЦИОННЫХ

СРЕДСТВ

Дезинфицирующие средства	Инсектициды	Репелленты
Альдегиды	Карбаматы	Альдегиды
Кислородсодержащие соединения	Пиретроиды	Амиды органических кислот
Хлорактивные соединения	Макроциклические лактоны	Производные В-аланина
Третичные амины	Неоникотиноиды	Пиперидины
Четвертично- аммониевые соединения	Фосфорорганическ ие соединения	Эфиры органических кислот
Производные бигуанида	Фенилпиразолы	Спирты
Полимерные производные гуанидина	Аналоги юве- нильного гормона	
Спирты	Формамидины	
Соединения йода		

Характер биологического действия изученных нами веществ:

- 15 веществ обладали избирательным раздражающим действием,
- 10 неизбирательным раздражающим действием,
- 9 веществ оказывали преимущественное действие на функцию нервной системы,
- 2 вещества на функцию печени,
- 30 на уровне Limac вызывали изменение функционального состояния различных органов и систем организма

ТАБЛ. 2. ВЕЩЕСТВА С ИЗБИРАТЕЛЬНЫМ РАЗДРАЖАЮЩИМ ДЕЙСТВИЕМ

Nº	Соединение	Lim _{ir} , мг/м³, крыс	Lim _{ir} , мг/м³, человек	ПДК/ ОБУВ, мг/м³,р.	ОБУВ, мг/м³, атмосф.
1.	Бензилхлорформиат	4,6	2,8	0,5	-
2.	2-Бензил-4-хлорфенол	9,8	1,9	0,3	-
3.	Гексаметилентетрамин	4,6	2,1	0,3	0,01
4.	Ортофосфористая	4,5	1,2	0,4	0,02
5.	кислота Третбутилгипохлорит	93	18,2	5	-
6.	Фенилтиол	2,4	0,6	0,2	-
7.	Фенилфенол	12,3	2,8	0,3	0,03
8.	2-Фуроилхлорид	6,5	2,3	0,3	-
9.	Хлорацетилхлорид	9,1	2	0,3	0,03
10.	3-Хлорбутанон-2	125,4	55,3	10	0,02

ТАБЛИЦА 3. ВЕЩЕСТВА С ПРЕИМУЩЕСТВЕННЫМ ВЛИЯНИЕМ НА НЕРВНУЮ СИСТЕМЫ

Nº	Соединение	DL ₅₀ ,в/ж мг/кг, крысы	Lim _{ac} , Mr/M ³	ПДК/ ОБУВ, мг/м³, раб.зона	ОБУВ, мг/м³, Атм.
1.	4-Амино-2,2,6,6-тетраметилпиперидин	906	60	3	-
2.	Аммоний перренат	3500	78	2	-
3.	1,1,1,2,3,3,3-Гептафтор-пропан	-	382000	3000	-
4.	Диметилкарбонат	9200	312	20	0,1
5.	2,2,6,6-тетраметилпиперидин-4-он	1539	84	3	-
6.	Трипропиленфенол	716	68	5/2	-
7.	Этиленкарбонат	9500	290	20	0,1
8.	1,3,4,6,7,9,9в-гептаазафенален-2,5,8- триамин	1200	90	2	-

ТАБЛИЦА 4. ДРУГИЕ ИЗУЧЕННЫЕ ВЕЩЕСТВА

Nº	Соединение	Limac, мг/м3	ОБУВ мг/м3, р.з.	ОБУВ мг/м3, атм.
1	Барбитуровая кислота	5355	10	0,1
2	2-(Бутоксиэтокси)этанол	936	10	1,3
3	Дициклобутилиден	855	10	0,07
4	Дициклогексиловый эфир адипиновой к-	108	5	0.05
5	ТЫ Дициклогексиловый эфир янтарной к-ты	163	10	0,1
6	Изобутилсалицилат	185	5	0,05
7	Карфедон	212	5	0,01
8	Ментол	16,5	2	0,03
9	Ментанилацетат	455	10	0,1
10	Метилфенилкарбонат	106	1	0,02
11	1-Нитро-4-(фенилметокси)-бензол	12,2	1	1
12	2,2,3,3-Тетрафторпропилметакрилат	1130	10	0,1
13	Этил-2-оксо-3-пиперидинкарбоксилат	16,6	2	0,02

НА ОСНОВАНИИ ПРОВЕДЕННЫХ ИССЛЕДОВАНИЙ ДЛЯ УСТАНОВЛЕНИЯ LIMAC ПРЕДЛОЖЕНЫ КОМПЛЕКСЫ ЧУВСТВИТЕЛЬНЫХ И ИНФОРМАТИВНЫХ ПОКАЗАТЕЛЕЙ, ОТРАЖАЮЩИХ ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ РАЗЛИЧНЫХ ОРГАНОВ И СИСТЕМ

Оценка функции нервной системы:

-тесты «Открытое поле», «ТКСО», ориентировочная реакция, СПП

Оценка функции печени:

- -активность АЛТ, АСТ, ЩФ, ЛДГ, ФМФА
- -содержание общего белка, альбуминов, билирубина, глюкозы
- -проба Квика-Пытеля на синтез гиппуровой кислоты
- -бромсульфалеиновая проба

Оценка функции почек:

- -суточный объем мочи после водной нагрузки
- -содержание белка и ионов хлоридов в моче
- -содержание мочевины/креатинина в моче и сыворотке крови (СКФ)

Оценка дыхательной системы:

- -частота дыхания
- -клеточный состав смывов из легких и верхних дыхательных путей

В результате выполненных исследований установлена тесная зависимость между порогом острого ингаляционного действия, установленного с учетом биологического эффекта, и величиной гигиенического норматива в воздухе рабочей зоны.

На основании проведенного математического анализа (коэффициент корреляции, стандартная ошибка, количество наблюдений, высокая статистическая значимость) рекомендованы ряд формул расчета гигиенических нормативов в воздухе рабочей зоны для веществ:

- о преимущественным влиянием на нервную систему (n=90):
- lg OБУВ = 0,90 lg Limac 1,26 ($M\Gamma/M3$), (r= 0,89, p<0,001)
- с нефротоксическим эффектом (n=18):
- $\lg OBYB = 1.18 \lg Limac 1.78 (MF/M3), (r = 0.88, p < 0.001)$
- о с гепатотропным действием (n=47):
- lg OБУВ = 0.86 lg Limac 1.22 (мг/м3), (r= 0.80, p<0.001)
- с избирательным раздражающим действием (n=43):
- Lg ПДК= lg Limir 1,18 (мг/м3), (r= 0,93, p<0,001)
- с неизбирательным раздражающим действием (n=69):
- Lg ОБУВ=0,84 lg Limac 1,21 (мг/м3), (r= 0,80, p<0,001)
- о политропным характером действия (n=39):
- lg OБУВ = 0.79 lg Limac 1.14 (мг/м3), (r= 0.83, p<0.001)

ИСПОЛЬЗУЯ АНАЛОГИЧНЫЙ ПОДХОД БЫЛИ РАЗРАБОТАНЫ МЕТОДЫ ПРОГНОЗИРОВАНИЯ ГИГИЕНИЧЕСКИХ НОРМАТИВОВ В АТМОСФЕРНОМ ВОЗДУХЕ НАСЕЛЕННЫХ МЕСТ ДЛЯ ВЕЩЕСТВ:

- о преимущественным влиянием на нервную систему (n=19):
- lg ОБУВ =0,73 lg Limac 2,98 (мг/м3), (r= 0,89, p<0,001);
- о с гепатотропным действием (n = 19):
- lg OБУВ =0,47 lg Limac 2,33 ($M\Gamma/M3$), (r = 0,61, p<0,009).
- о неизбирательным раздражающим действием (n=29):
- \odot lg ОБУВ =0,69 lg Limac 2,66 (мг/м3), (r = 0,79, p<0,001);
- о политропным характером действия (n=18):
- lg ОБУВ =0,34 lg Limac+ 0,20 lg DL50- 2,91 (мг/м3),

ТАБЛ. 5.СОПОСТАВЛЕНИЕ УТВЕРЖДЕННЫХ И ПОЛУЧЕННЫХ ПО ПРЕДЛОЖЕННЫМ ФОРМУЛАМ ОБУВ ХИМИЧЕСКИХ ВЕЩЕСТВ

Νō	Наименование	ПДК/ОЕ	Рабочая зона ПДК/ОБУВ,		Атмосфера ПДК/ОБУВ, мг/м³		
		мг/м³ Расчетны	Утвержд.	Расчетны	Утвержд		
1	Аверсектин	0,1 ^e	0,05	0,004	0,002		
2	Гексаметилентетрмин	0,3	0,3	0,01	0,01		
3	5-бензилокситриптамин	0,3	0,1	0,008	0,005		
4	5-бензилокситриптамин-2- карбоновая к-та	1	1	0,01	0,01		
5	Диметилкарбонат	10	20	0,1	0,1		
6	2,2-Диметилпропандиол-1,3	20	10	0,1	0,1		
7	Магния гидрооксид	2	2	0,04	0,02		
8	Пиритион цинк	0,2	0,2	0,005	0,01		
9	N-фталил-5-	1	1	0,01	0,01		

бензилокситриптамин

- Таким образом, предложены новые
 математических модели расчета гигиенических
 нормативов веществ с различным характером
 биологического действия на основании
 определения Limac на лабораторных животных по
 комплексам показателей, отражающих функции
 нервной, дыхательной систем, печени и почек.
- Для веществ с преимущественным влиянием на нервную систему установлена высокая корреляционная зависимость между Limac и гигиеническими нормативами как для воздуха рабочей зоны, так и для атмосферного воздуха населенных мест.

 Для многокомпонентных дезинфекционных средств установление особенностей биологического действия, входящих в него химических веществ, позволит повысить точность прогноза характера их совместного действия (суммация, потенцирование и т.п.), определить наиболее чувствительные органы и системы организма к их воздействию.

DIATOMANO 3A BHIMAHIGI