# Основы кибернетики и робототехники Лекция 5

# Serial. Общаемся с компьютером

Набор функций Serial — это стандартный набор функций, который используется для передачи данных через последовательный порт Arduino. Последовательный порт работает с двумя цифровыми пинами Ардуино О-ой (RX) и 1-ый (TX). В большинстве плат ардуино доступен 1 интерфейс Serial.



Среда Arduino IDE не содержит отладчика, что создает определенные проблемы в поиске ошибок кода программы. Без ошибок программы сразу не пишутся. Формальные ошибки выявляются при компиляции, а с алгоритмическими и вычислительными ошибками намного сложнее. Основная функция отладки это увидеть состояние программы, узнать значение переменных. Это можно сделать, передав нужную информацию на компьютер через последовательный интерфейс. Физическое подключение платы Ардуино к компьютеру через USB кабель существует всегда. Среда Arduino IDE имеет монитор последовательного порта, позволяющий получать и посылать данные обмена с платой. Можно передать на компьютер любую информацию о состоянии

## Последовательный интерфейс UART.

UART в переводе это универсальный асинхронный приемопередатчик. Данные UART передаются последовательным кодом в следующем формате.



Каждый бит передается за равные промежутки времени. Время передачи одного бита определяется скоростью передачи.

Часто используются следующие стандартные скорости передачи интерфейса UART.

| Скорость передачи,<br>бод | Время передачи одного<br>бита, мкс | Время передачи байта<br>мкс |
|---------------------------|------------------------------------|-----------------------------|
| 4800                      | 208                                | 2083                        |
| 9600                      | 104                                | 1042                        |
| 19200                     | 52                                 | 521                         |
| 38400                     | 26                                 | 260                         |
| 57600                     | 17                                 | 174                         |
| 115200                    | 8,7                                | 87                          |

Бод (англ. baud) в связи и электронике — единица измерения символьной скорости.

Обмен информацией через UART происходит в двойном режиме, т.е. передача данных может происходить одновременно с приемом. **Для этого в интерфейсе UART есть два сигнала:** 

ТХ – выход для передачи данных;

RX – вход для приема данных.



При соединении двух UART устройств выход TX одного устройства соединяется со входом RX другого. А сигнал TX второго UART подключается к входу RX первого.

## Библиотека Serial для работы с UART

Ардуино.

Для работы с аппаратными UART контроллерами в Ардуино существует встроенный класс Serial. Он предназначен для управления обменом данными через UART. Перед тем, как перейти к функциям класса Serial, необходимо понять разницу в формате данных обмена.

**Через последовательный интерфейс данные всегда передаются в двоичном коде.** Вопрос как эти данные интерпретировать, как воспринимать. Например, передан двоичный код "0100001" (десятичный 65). Как его отобразить на экране? Может быть передано число 65 и на экране надо вывести "65". А может это код буквы "А", тогда на экране надо написать "А". Просто необходимо знать в каком формате передаются данные.

#### В классе Serial данные могут передаваться в двух форматах:

- как бинарный код;
- как **ASCII** символы.

### **ASCII**

**КОДИРОВКА**ASCII — это таблица кодировки символов, в которой каждой букве, числу или знаку соответствует определенное число. В стандартной таблице ASCII 128 символов, пронумерованных от 0 до 127. В них входят латинские буквы, цифры, знаки препинания и управляющие символы.

| ASCII Table |     |     |      |     |     |     |         |     |     |     |      |     |     |     |      |
|-------------|-----|-----|------|-----|-----|-----|---------|-----|-----|-----|------|-----|-----|-----|------|
| Dec         | Hex | 0ct | Char | Dec | Hex | 0ct | Char    | Dec | Hex | 0ct | Char | Dec | Hex | 0ct | Char |
| 0           | 0   | 0   |      | 32  | 20  | 40  | [space] | 64  | 40  | 100 | @    | 96  | 60  | 140 | 2    |
| 1           | 1   | 1   |      | 33  | 21  | 41  | 1       | 65  | 41  | 101 | A    | 97  | 61  | 141 | a    |
| 2           | 2   | 2   |      | 34  | 22  | 42  | 0       | 66  | 42  | 102 | В    | 98  | 62  | 142 | b    |
| 3           | 3   | 3   |      | 35  | 23  | 43  | #       | 67  | 43  | 103 | C    | 99  | 63  | 143 | C    |
| 4           | 4   | 4   |      | 36  | 24  | 44  | \$      | 68  | 44  | 104 | D    | 100 | 64  | 144 | d    |
| 5           | 5   | 5   |      | 37  | 25  | 45  | %       | 69  | 45  | 105 | E    | 101 | 65  | 145 | e    |
| 6           | 6   | 6   |      | 38  | 26  | 46  | &       | 70  | 46  | 106 | F    | 102 | 66  | 146 | f    |
| 7           | 7   | 7   |      | 39  | 27  | 47  |         | 71  | 47  | 107 | G    | 103 | 67  | 147 | g    |
| 8           | 8   | 10  |      | 40  | 28  | 50  | (       | 72  | 48  | 110 | H    | 104 | 68  | 150 | h    |
| 9           | 9   | 11  |      | 41  | 29  | 51  | )       | 73  | 49  | 111 | 1    | 105 | 69  | 151 | 1    |
| 10          | A   | 12  |      | 42  | 2A  | 52  | *       | 74  | 4A  | 112 | 1    | 106 | 6A  | 152 | 1    |
| 11          | В   | 13  |      | 43  | 2B  | 53  | +       | 75  | 48  | 113 | K    | 107 | 68  | 153 | k    |
| 12          | C   | 14  |      | 44  | 2C  | 54  | ,       | 76  | 4C  | 114 | L    | 108 | 6C  | 154 | 1    |
| 13          | D   | 15  |      | 45  | 2D  | 55  | 72      | 77  | 4D  | 115 | M    | 109 | 6D  | 155 | m    |
| 14          | E   | 16  |      | 46  | 2E  | 56  | 8928    | 78  | 4E  | 116 | N    | 110 | 6E  | 156 | n    |
| 15          | F   | 17  |      | 47  | 2F  | 57  | 1       | 79  | 4F  | 117 | 0    | 111 | 6F  | 157 | 0    |
| 16          | 10  | 20  |      | 48  | 30  | 60  | 0       | 80  | 50  | 120 | P    | 112 | 70  | 160 | р    |
| 17          | 11  | 21  |      | 49  | 31  | 61  | 1       | 81  | 51  | 121 | Q    | 113 | 71  | 161 | q    |
| 18          | 12  | 22  |      | 50  | 32  | 62  | 2       | 82  | 52  | 122 | R    | 114 | 72  | 162 | Г    |
| 19          | 13  | 23  |      | 51  | 33  | 63  | 3       | 83  | 53  | 123 | 5    | 115 | 73  | 163 | s    |
| 20          | 14  | 24  |      | 52  | 34  | 64  | 4       | 84  | 54  | 124 | Т    | 116 | 74  | 164 | t    |
| 21          | 15  | 25  |      | 53  | 35  | 65  | 5       | 85  | 55  | 125 | U    | 117 | 75  | 165 | u    |
| 22          | 16  | 26  |      | 54  | 36  | 66  | 6       | 86  | 56  | 126 | V    | 118 | 76  | 166 | v    |
| 23          | 17  | 27  |      | 55  | 37  | 67  | 7       | 87  | 57  | 127 | W    | 119 | 77  | 167 | w    |
| 24          | 18  | 30  |      | 56  | 38  | 70  | 8       | 88  | 58  | 130 | X    | 120 | 78  | 170 | ×    |
| 25          | 19  | 31  |      | 57  | 39  | 71  | 9       | 89  | 59  | 131 | Y    | 121 | 79  | 171 | У    |
| 26          | 1A  | 32  |      | 58  | 3A  | 72  | 4       | 90  | 5A  | 132 | Z    | 122 | 7A  | 172 | z    |
| 27          | 18  | 33  |      | 59  | 3B  | 73  | ;       | 91  | 5B  | 133 | 1    | 123 | 7B  | 173 | {    |
| 28          | 10  | 34  |      | 60  | 3C  | 74  | <       | 92  | 5C  | 134 | 1    | 124 | 7C  | 174 | ì    |
| 29          | 1D  | 35  |      | 61  | 3D  | 75  | -       | 93  | 5D  | 135 | 1    | 125 | 7D  | 175 | )    |
| 30          | 1E  | 36  |      | 62  | 3E  | 76  | >       | 94  | 5E  | 136 | ^    | 126 | 7E  | 176 | ~    |
| 31          | 1F  | 37  |      | 63  | 3F  | 77  | 7       | 95  | 5F  | 137 |      | 127 | 7F  | 177 |      |

# Основные функции класса Serial.

Serial.beg

in

**Разрешает работу порта UART и задает скорость обмена в бод (бит в сек)**. Для задания скорости передачи данных рекомендуется использовать стандартные значения из таблицы.

```
Serial.begin(38400); // инициализация порта, скорость 38400 бод
```

#### Serial.end

Отключает порт UART, освобождает выводы RX и TX.

```
Serial.end(); // закрыть порт UART
```

#### Serial. Available

Возвращает количество байт, принятых последовательным портом и записанных в буфер. Буфер последовательного порта может хранить до 64 байт. В случае пустого буфера возвращает 0.

```
int n;
n= Serial. available(); // в n число принятых байтов
```

#### Serial.print

Выводит данные через последовательный порт UART в виде ASCII символов. Функция имеет различные формы вызова для разных форматов и типов данных.

```
Serial.print("Буквы"); // выводит строку "Буквы"
```

```
print(char d)
               Если аргумент типа char выводит в порт код символа
               char d = 83;
               Serial.print(d); // выводит код 83 (символ S)
               Serial.print('S'); // выводит код 83 (символ S)
print(byte d) Данные типа byte выводятся кодом числа
               byte d = 83;
               Serial.print(d); // выводит код 83 (символ S)
               Serial.print(byte(83)); // выводит код 83 (символ S)
               Если аргумент - целый тип, то выводит строку с десятичным
print(int d)
               представлением числа
               int d = 83;
               Serial.print(d); // выводит строку "83"
               Serial.print(83); // выводит строку "83"
print(float)
               Вещественные типы выводятся символами ASCII, два знака после
               запятой
               float d = 7.65432;
               Serial.print(d); // выводит строку "7.65"
               Serial.print(7.65432); // выводит строку "7.65"
```

| print(int d,<br>DEC)  | Выводит строку ASCII - десятичное представление числа $int \ d=83;$ Serial.print(d, DEC); // вывод строки "83"                                                                                                                   |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| print(int d,<br>HEX)  | Выводит строку ASCII – шестнадцатиричное представление числа $int \ d=83;$ Serial.print(d, HEX); // вывод строки "53"                                                                                                            |
| print(int d,<br>OCT)  | Выводит строку ASCII – восьмеричное представление числа $int \ d=83;$ Serial.print(d, OCT); // вывод строки "123"                                                                                                                |
| print(int d,<br>BIN)  | Выводит строку ASCII – двоичное представление числа $int \ d = 83;$ Serial.print(d, BIN); // вывод строки "01010011"                                                                                                             |
| print(int d,<br>BYTE) | Выводит код младшего байта числа int $d=0x0283$ ; Serial.print( $d$ , BYTE); // вывод числа 83 (код символа $S$ )                                                                                                                |
| print(float d,<br>N)  | Для вещественных чисел параметр N задает количество цифр после запятой.  Serial.print(7.65432, 0); // выводит строку "7" Serial.print(7.65432, 2); // выводит строку "7.65" Serial.print(7.65432, 4); // выводит строку "7.6543" |

#### Serial.println

Выводит данные через последовательный порт UART в виде ASCII символов с добавлением символов переноса строки (\r, код 13) и (\n, код 10). Т.е. следующее сообщение будет отображаться с новой строки. В остальном аналогична функции print().

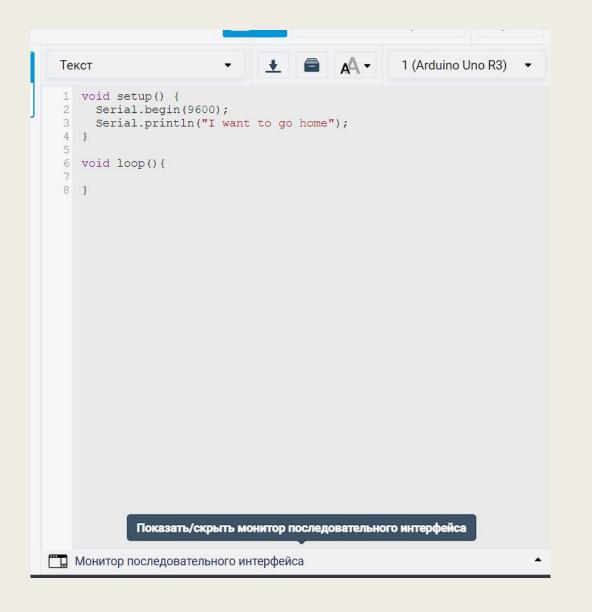
```
int d=83;
Serial.print(d, DEC); // вывод строки "83"
Serial.println(d, DEC); // вывод строки "83 \r \n"
```

#### **Serial.write**

Выводит двоичные данные через последовательный порт **UART.** Возвращает количество

| ПЕПЕЛЯННЫХ     | MAUTOR                                                                                                                       |
|----------------|------------------------------------------------------------------------------------------------------------------------------|
| int write(val) | Передает байт                                                                                                                |
|                | Serial.write(83); // передает байт 83                                                                                        |
| int write(str) | Передает строку, как последовательность байтов                                                                               |
|                | int bytesNumber; // число байтов  bytesNumber= Serial.write("Строка"); // передает строку "Строка",  возвращает длину строки |

## Применение класса Serial.


Класс Serial встроенный. Для него не надо искать библиотеку и подключать ее. Чтобы использовать UART достаточно в setup() разрешить работу порта и задать скорость:

```
void setup() {
   Serial.begin(9600); // инициализируем порт, скорость 9600
}
```

Теперь можно передавать данные с помощью функций print() или write().

Serial.println("Message to monitor"); // сообщение в монитор последовательного порта

Давайте выведем какое-нибудь сообщение. Это можно сделать в методе setup(), так как нам не нужно повторять одну и ту же фразу бесконечно. Метод loop() оставляем пустым.



```
1 void setup() {
       Serial.begin(9600);
       Serial.println("I want to go home");
  4 }
  6 void loop() {
Монитор последовательного интерфейса
I want to go home
                                                      Отпр.
```

Вот программа, которая каждую секунду выводит в монитор последовательного порта сообщение и переменную.

```
1 (Arduino Uno R3)
 Текст
  1 int i=10;
  2 void setup() {
       Serial.begin(9600); // инициализируем порт, скорость 9600
  4
  6 void loop() {
      Serial.print("Lekciya zakonchitca cherez:");
  8 Serial.println(i);
     i=i-1;
 10
       delay(1000);
 11 }
Монитор последовательного интерфейса
Lekciya zakonchitca cherez:10
Lekciya zakonchitca cherez:9
Lekciya zakonchitca cherez:8
Lekciya zakonchitca cherez:7
Lekciya zakonchitca cherez:6
Lekciya zakonchitca cherez:5
Lekciya zakonchitca cherez:4
Lekciya zakonchitca cherez:3
Lekciya zakonchitca cherez:2
Lekciya zakonchitca cherez:1
Lekciya zakonchitca cherez:0
```