

ДИНАМИКА в задачах

Автор: Бахтина Ирина Владимировна, учитель физики МОУ «СОШ №3 г. Новый Оскол Белгородской области»

Содержание

1. Немного теории

2. План решения задач

3. Движение по горизонтали

4. Движение по вертикали

5. Наклонная плоскость

б. Задачки «на десерт»

Вспомним законы Ньютона

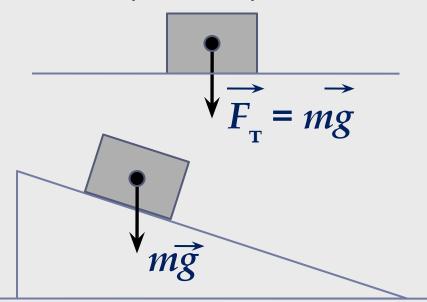
Тема или действия других тем скомпенсированы.

Комментарии: если тело движется с равномерно, это значит,

Комментарии: \tilde{F} – это равнодействующая сил, приложенных к

<u>Ш закон</u>: Тела действуют друг на друга с силами, равными по

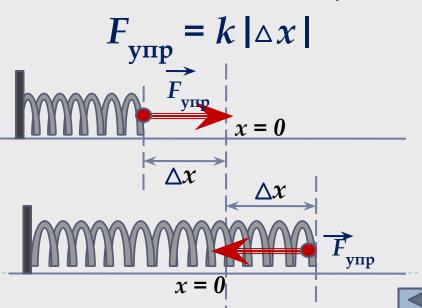
модулю и противоположными по направлению Комментарии: силы всегда встречаются парами



Вспомним, какие силы нам

известны

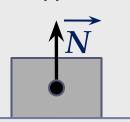
Сила тяжести

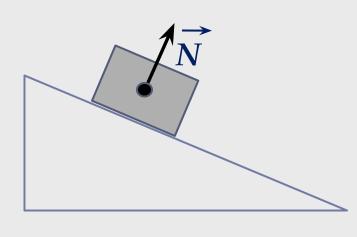

приложена к центру тела, всегда направлена вертикально вниз

Сила упругости

возникает при деформации тела, пропорциональна его удлинению и направлена противоположно направлению смещения частиц тела при деформации.

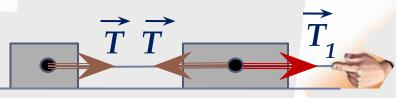
При малых деформациях для модуля силы выполняется закон Гука:

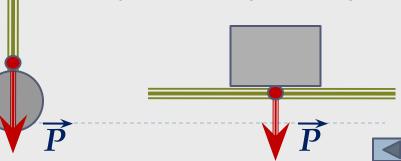




« Разновидности» силы

УПРУГОСТИСила реакции опоры


Приложена к центру тела, всегда направлена перпендикулярно поверхности, на которой находится тело


Сила натяжения нити

Приложена к центру тела. В случае, если нить невесома, нерастяжима, одинакова в любой части нити

Вес тела

Это сила упругости, приложенная к <u>горизонтальной</u> опоре или <u>вертикальному</u> подвесу

Силы

трения

Сила трения возникает, если одно тело покоится на поверхности другого или движется по поверхности другого. Виды трения: покоя, скольжения, качения. Сила трения приложена к телу и направлена вдоль поверхности соприкасающихся тел в сторону, противоположную направлению движения тела, предполагаемого движения (когда мы пытаемся сдвинуть тело с места)

 Исключением является случай, когда одно тело начинает движение по поверхности другого тела.

Здесь сила трения направлена в сторону движения тела и является

той силой, которая приводит 🚡

его в движение

Максимальная сила трения покоя (скольжения) пропорциональна силе нормального давления

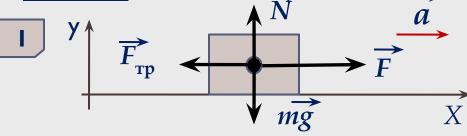
Для удобства можно изображать силу трения от

План решения задач по

ДИНАМИКЕ

- ▶ 1. Сделать рисунок, на котором обозначить направление координатных осей, ускорения и всех сил, приложенных к телу.
- ▶ 2. <u>Для каждого тела</u> записать в векторном виде уравнение второго закона Ньютона, перечислив в его правой части в любом порядке все силы, приложенные к телу
- **3. Записать полученные в п. 2 уравнения в проекции на оси координат.**
- ▶ 4. Из полученного уравнения (системы уравнений) выразить неизвестную величину.
- 5. Найти численное значение неизвестной величины, если этого
 требует условие задачи.

Движение тел


в горизонтальном

Направлении Какая горизонтальная сила потребуется, чтобы тело массой 2 кг, лежащее на горизонтальной поверхности, начало скользить по ней с ускорением 0,2 м/с²? Коэффициент трения принять равным 0,02.

Дано:

 $0,020,2 \text{ m/c}^2$

Решение:

$$ma = mg + F_{Tp} + N + F$$
 Откуда $F = ma + \mu mg$

3 Ox
$$ma = 0 - F_{Tp} + 0 + F$$
 (1)

Вычислим F = 0.79 H

$$oy 0 = -mg + 0 + N + 0$$
 (2)

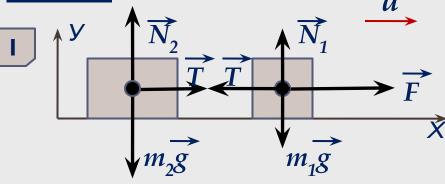
уиз (2):
$$mg = N$$
 , т. к. $F_{\rm Tp} = \mu N$,

получим уравнение (1) в виде:

$$ma = -\mu mg + F$$

Ответ:
$$F = 0.79$$

Два тела массами 50 г и 100 г связаны нитью и лежат на гладкой горизонтальной поверхности. С какой силой можно тянуть первое


тело, чтобы нить, выдерживающая максимальную силу

натяжения 5 Н, не оборвалась?

<u>Дано:</u>

$$m_1 = 50 \Gamma = 0.05 \text{ K}\Gamma$$
 $m_2 = 100 \Gamma = 0.1 \text{ K}\Gamma$
 $T = 5 \text{ H}$
 $T = 7$

Решение:

$$\begin{array}{ccc}
\mathbf{2} & \overrightarrow{m_1 a} = \overrightarrow{m_1 g} + \overrightarrow{T} + \overrightarrow{N_1} + \overrightarrow{F} \\
m_2 \overrightarrow{a} = \overrightarrow{m_2 g} + \overrightarrow{T} + \overrightarrow{N_2}
\end{array}$$

Ox
$$m_1 a = -T + F$$
 (1)

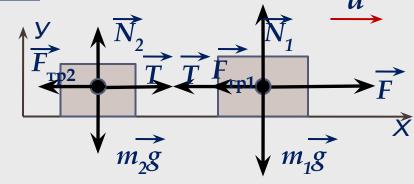
$$: m_2 a = T \qquad (2)$$

4 Выражая из (2) :
$$a = T/m_{2}$$
, и подставляя в (1), получим

$$m_1 T/m_2 = -T + F$$

 $F = m_1 T/m_2 + T$

5
$$F = 0.05 \text{ K} \cdot 5 \text{H} / 0.1 \text{ K} \cdot 7 + 5 \text{ H} = 7.5 \text{ H}$$



Автодрезина ведет равноускоренно две платформы массами 12 т и 8 т. Сила тяги, развиваемая дрезиной, равна 1,78 кН. Коэффициент трения равен 0,06. С какой слой натянута сцепка между платформами?

Дано:

$$m_1$$
= 12 т = 12 000 кг
 m_2 = 8 т = 8 000 кг
 F = 1,78 кH = 1780 H
 μ =

Решение:

остается

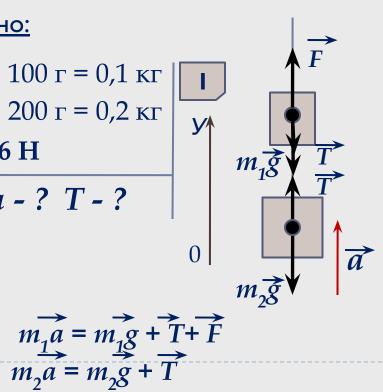
- $m_{1}\overrightarrow{a} = m_{1}\overrightarrow{g} + \overrightarrow{T} + \overrightarrow{N}_{1} + \overrightarrow{F} + \overrightarrow{F}_{\text{Tp1}}$ $m_{2}\overrightarrow{a} = m_{2}\overrightarrow{g} + \overrightarrow{T} + \overrightarrow{N}_{2} + \overrightarrow{F}_{\text{Tp2}}$
- Ox: $m_1 a = -T + F F_{\text{Tp1}}$ (1) $m_2 a = T - F_{\text{Tp2}}$ (2)
- 4 $F_{\mathrm{Tp1}} = \mu \, N_1 = \mu \, m_1 g \,, \ F_{\mathrm{Tp2}} = \mu \, N_2 = \mu \, m_2 g$ Подставив эти выражения в (I) и (2), получим: $m_1 a = -T + F \mu \, m_1 g \, (5)$ $m_2 a = T \mu \, m_2 g \,, \ a = \frac{T \mu \, m_2 g}{m_2} \, (6)$ После подстановки (6) в (5)

Oy: $0 = -m_1 g + N_1$, откуда $N_1 = m_1 g$ (3) $0 = -m_2 g + N_2$ откуда $N_2 = m_2 g$ (4)

выразит $F = m_2 F / (m_1 + m_2) = 712 \text{ H}$

ightharpoonup C учетом (3) и (4) для сил трения имеем:

Ответ: T = 712 H



Движение по вертикали.

Два тела, связанные друг с другом, поднимают на нити вертикально вверх, прикладывая силу 5 Н. Масса первого тела 100 г, второго 200 г. Определите ускорение, с которым движутся тела и силу натяжения нити.

<u>Дано:</u>

$$m_1$$
= 100 г = 0,1 кг
 m_2 = 200 г = 0,2 кг
 F = 6 H
 a - ? T - ?

Решение:

Oy:
$$m_1 a = -m_1 g - T + F$$
 (1)

$$m_2 a = -m_2 g + T$$
 (2)

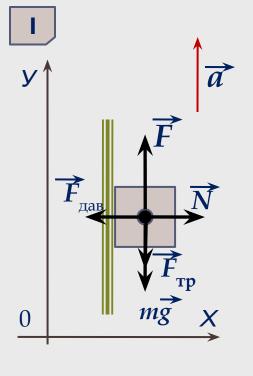
Сложим (1) и (2)
$$\dot{m}_1 a + m_2 a = -m_1 g + F - m_2 g$$

$$F - m_2 g - m_1 g$$

$$a = \frac{F - m_2 g - m_1 g}{m_1 + m_2} , T = m_2 (g + a)$$

5
$$a = 10 \text{ m/c}^2$$
 $T = 4 \text{ H}$

Ответ:
$$a = 10$$
 м/с², $T = 4$ Н



Тело массой 50 кг придавлено к вертикальной стене силой 4 Н. Какая сила необходима для того, чтобы перемещать его вертикально вверх с ускорением 0,2 м/с², если коэффициент трения 0,5 ?

Дано:

$$\mu$$
 = 0,5 0,2 м/с² m = 50 $\kappa \Gamma$ $F_{\text{дав}}$ = 4 H

Решение:

$$\overrightarrow{ma} = \overrightarrow{mg} + \overrightarrow{F}_{\text{AB}} + \overrightarrow{N} + \overrightarrow{F} + \overrightarrow{F}_{\text{Tp}}$$

Oy:
$$ma = -mg - F_{Tp} + F$$
 (1)

Ox:
$$0 = -F_{\text{mab}} + N$$
 (2)

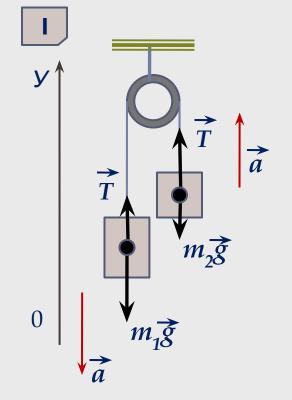
4 Из (2):
$$N = F_{\text{дав}}$$
 Имеем, $F_{\text{тр}} = \mu N = \mu F_{\text{дав}}$

Подставим это выражение в (I):

$$ma = -mg - \mu F_{\text{дав}} + F$$
 $F = mg + \mu F_{\text{дав}} + ma$
 $F = m (a + g) + \mu F_{\text{дав}}$

$$F = 50 \text{ K} \Gamma (0.2 \text{ M/c}^2 + 9.8 \text{ M/c}^2) + 0.5 \cdot 4 \text{ H} = 502 \text{ H}.$$

Ответ: F = 502 H



К концам легкой нити, перекинутой через невесомый блок, подвешены грузы массами 2 кг и 1 кг. Определите ускорение грузов.

Дано:

$$m_1 = 2 \text{ KF}$$
 $m_2 = 1 \text{ KF}$
 $a - ?$

Решение:

$$m_{1}\overrightarrow{a} = m_{1}\overrightarrow{g} + \overrightarrow{T}$$

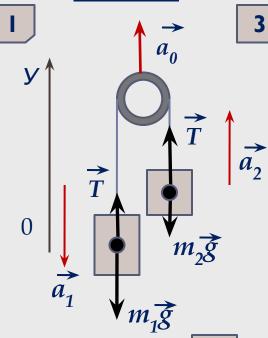
$$m_{2}\overrightarrow{a} = m_{2}\overrightarrow{g} + \overrightarrow{T}$$

Oy:
$$-m_1 a = -m_1 g + T$$
 (1)
 $m_2 a = -m_2 g + T$ (2)

Вычтем из (2) (1) и выразим a: $m_2 a + m_1 a = m_1 g - m_2 g$ $a = \frac{m_1 g - m_2 g}{m_2 + m_1}$

$$a = \frac{9.8 \text{ m/c}^2 (2 \text{ kg} - 1 \text{ kg})}{1 \text{ kg} + 2 \text{ kg}} = 3.3 \text{ m/c}^2$$

$$Other: a = 3.3 \text{ m/c}^2$$



К концам легкой нити, перекинутой через невесомый блок, подвешены грузы массами 2 кг и I кг. Систему грузов вместе с блоком поднимают вертикально вверх с ускорением I м/с². Определите ускорения грузов.

<u>Дано:</u>

 $m_1 = 2 \text{ K}\Gamma$ $m_2 = 1 \text{ K}\Gamma$ $a_0 = 1 \text{ M/c}^2$ $a_1 - ?$ $a_2 - ?$

Решение:

Каждый груз участвует в двух движениях:

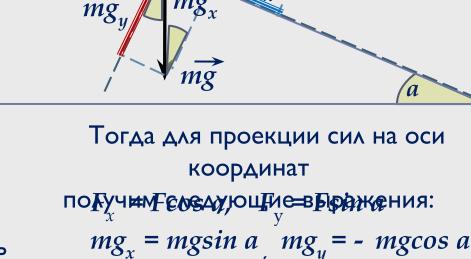
- перемещается относительно блока с ускорением a
- вместе с блоком перемещается относительно земли с ускорением a_0 Предположим, что $a > a_0$, тогда относительно земли в проекции на Oy:

$$-a_{1} = -a + a_{0}, \ a_{2} = a + a_{0} = >$$

$$\begin{cases}
a_{2} = 2a_{0} + a_{1} \\
-m_{1}a_{1} = -m_{1}g + T \\
m_{2}a_{2} = -m_{2}g + T
\end{cases}$$

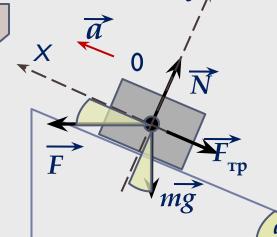

$$\begin{array}{ccc}
\mathbf{2} & \overrightarrow{m_1 a} = \overrightarrow{m_1 g} + \overrightarrow{T} \\
m_2 \overrightarrow{a} = m_2 \overrightarrow{g} + \overrightarrow{T}
\end{array}$$

4 Решая систему, получим формулу для a_1 :


$$a_1 = \frac{g (m_1 - m_2) - 2m_2 a_0}{m_1 - m_2} = 2.6 \text{ m/c}^2$$
 $a_2 = 4.6 \text{ m/c}^2$
Other: $a_1 = 2.6 \text{ m/c}^2$, $a_2 = 4.6 \text{ m/c}^2$

Движение по наклонной

• Для тела, расположенного на наклонной плоскости , целесообразно выбирать оси координат таким образом, чтобы ось Ox располагалась вдоль, а ось Oy — перпендикулярно наклонной плоскости (не нужно путать целесообразность с обязательностью)



На брусок массой m действует горизонтальная сила F, параллельная основанию наклонной плоскости с углом при основании a. С каким ускорением движется брусок к вершине, если коэффициент трения μ ?

<u>Дано:</u>

Решение:

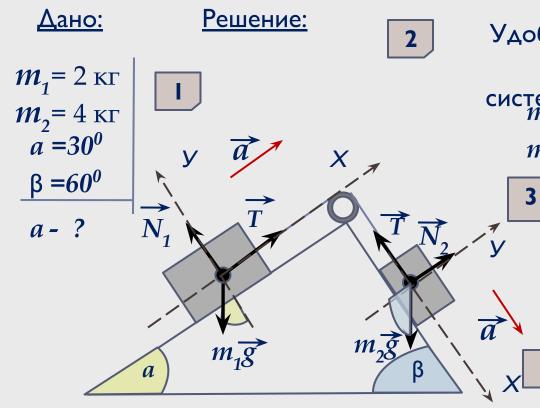
$$\overrightarrow{ma} = \overrightarrow{mg} + \overrightarrow{F}_{Tp} + \overrightarrow{N} + \overrightarrow{F}$$

Ox:
$$ma = -F_{Tp} - mgsin \ a + Fcos \ a \ (1)$$

Oy:
$$0 = -mg\cos a + N - F\sin a$$
 (2)

4 V13 (2):
$$N = mgcos a + Fsin a$$
,
$$F_{Tp} = N \mu = \mu \text{ (mgcos } a + Fsin a)$$

$$ma = -\mu \text{ (mgcos } a + Fsin a) - mgsin a + Fcos a$$


$$a = \frac{-\mu \, (mg\cos a + F\sin a) - mg\sin a + F\cos a}{m}$$

- μ (mg cos a + Fsin a) - mgsin a + Fcos a

Otbet:
$$a = \frac{1}{m}$$

С каким ускорением будут двигаться грузы массами 2 кг и 4 кг, если $a = 30^{0}$, $\beta = 60^{0}$. Найти натяжение нити. Блоки и нить невесомы, трением пренебречь.

 $a = 4 \text{ M/c}^2$ T = 17.8 H

Удобно выбрать для каждого тела свою

систему координат (как на рисунке)
$$m_1 a = m_2 g + T + N_2$$

- 3 Ox: $m_1 a = -m_1 g \sin a + T$ (1)
 - Oy: $0' = -m_1 g \cos a + N_1$ (2)
 - Ox: $m_2 a = m_2 g \sin \beta T$ (3)
 - Oy: $0 = -m_1 g \cos \beta + N_2$ (4)

Складывая (1) и (3), и выражая ускорение, получим:

$$a = \frac{g (m_2 \sin \beta - m_1 \sin a)}{m_2 + m_1}$$

$$T = m_1 a + m_1 g \sin a$$

Ответ: a = 4 м/ c^2 , T = 17.8 Н

« Ha

Человек массой m_1 упираясь ногами в ящик массой m_2 подтягивает его с помощью каната, перекинутого через блок, по наклонной плоскости с углом наклона а. С какой минимальной силой нужно тянуть канат, чтобы подтянуть ящик к блоку? Коэффициент трения между ящиком и наклонной плоскостью μ_n

<u>Дано:</u> m_{1} ;

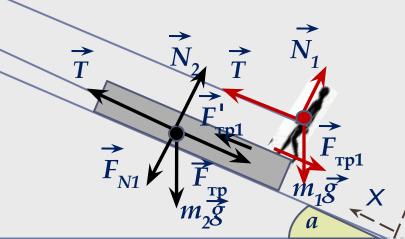
T-?

Сила будет минимальной при равномерном движении

 $0 = m_{1}g + \overrightarrow{T} + \overrightarrow{N}_{1} + \overrightarrow{F}_{Tp1}$ $0 = m_{2}g + \overrightarrow{T} + \overrightarrow{N}_{2} + \overrightarrow{F}_{Tp1}^{1} + \overrightarrow{F}_{Tp} + \overrightarrow{F}_{N1}$

Ox: $0 = -m_1 g \sin a + T - F_{\text{Tp1}}$ (1) $0 = -m_2 g \sin a + T + F_{\text{Tp1}} - F_{\text{Tp}}$ (2)

Oy: $0 = -m_1 g \cos a + N_1$

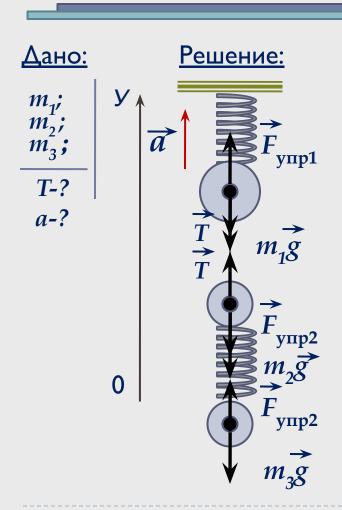

 $0 = -m_2 g \cos a + N_2 - F_{N1}$ (4)

Складывая (1) и (2), получим:

$$2T = g \sin a(m_1 + m_2) + F_{\text{Tp}}$$

 $F_{N1} = N_1 = m_1 g \cos a$

$$Y_{1}F_{Tp} = \mu N_{2} = \mu (m_{2}g \cos a + F_{N1}) = \mu g \cos a (m_{1} + m_{2})$$


$$T = g (m_1 + m_2)(\sin a + \mu \cos a)/2$$

Шары массами m_1 , m_2 , m_3 подвешены к потолку с помощью двух невесомых пружин и легкой нити. Система покоится. Определите силу натяжения нити . Определите направление и модуль ускорения шара массой m_1 сразу после пережигания нити.

I. Для ясности можно провести «мысленный эксперимент» — представить, что в середине нити находится динамометр. Получается, что к нему прикрепили грузы массами m_2 и m_3 . Естественно, его показания будут равны:

$$T = g \left(m_2 + m_3 \right)$$

2. В момент пережигания нити на верхний шар действуют только две силы $\overrightarrow{:F}_{y\pi p1}$ и $m_1 \overrightarrow{g}$, которые и сообщают шару ускорение.

$$m_1 \vec{a} = m_1 \vec{g} + \vec{F}_{y\pi p1}$$
 $F_{y\pi p1} = g (m_1 + m_2 + m_3) (cm. n.1)$

Окончательно после преобразований получим:

$$a = g(m_2 + m_3)/m_1$$

К концам троса, перекинутого через блок, привязаны бруски с массами m_1 = m и m_2 = 4m, находящиеся на гладкой наклонной плоскости с углом наклона 30°. При каком минимальном значении коэффициента трения между брусками они будут покоиться?

<u>Дано:</u>

$$m_1 = m$$

$$m_2 = 4m$$

$$a = 30^0$$

Решение:

$$\begin{array}{ccc}
\overrightarrow{m_1}\overrightarrow{a} &= \overrightarrow{m_1}\overrightarrow{g} + \overrightarrow{T} + \overrightarrow{N_1} + \overrightarrow{F_{TP}} \\
\overrightarrow{m_2}\overrightarrow{a} &= \overrightarrow{m_2}\overrightarrow{g} + \overrightarrow{T} + \overrightarrow{N_2} + \overrightarrow{F_{TP}} + \overrightarrow{F_{N1}}
\end{array}$$

 $Ox: 0 = -m_1 g \sin a + T - F_{Tp}$

 $0 = -m_{2}g \sin a + T + F_{TD}$

Oy: $0 = -m_1 g \cos a + N_1$

$$0 = -m_2 g \cos a + N_2 - F_{N1}$$
 (4)

 M_3 (3): $N_1 = m_1 g \cos a$

Из (4):
$$N_2 = m_2 g \cos a + F_{N1}$$

$$N_1$$
 = F_{N1} , поэтому
$$N_2$$
 = $m_2 g \cos a - m_1 g \cos a$

Вычтем из (1) (2) и учитывая, что $F_{\text{тр}} = F'_{\text{тр}}$ получим:

$$2F_{\text{Tp}} = m_2 g \sin a - m_1 g \sin a$$

 $F_{\text{Tp}} = \mu N_1 = \mu m_1 g \cos a$ $= m_2 g \sin a - m_1 g \sin a = 3$

$$2m_1g\cos a$$

Список литературы

- Г. Я. Мякишев. Физика: Учебник для 10 кл. общеобразовательных учреждений /
 Г. Я. Мякишев, Б. Б. Буховцев, Н. Н.Сотский. М.: Просвещение, 2008.
- 2. Кирик Л. А. Физика 9. Разноуровненые самостоятельные и контрольные работы. М.: Илекса, 2003.
- 3. Задачи вступительных экзаменов в МФТИ.

