

<u>МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ</u>

Структура, фазовый состав и спектрально-люминесцентные свойства твердых растворов La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O₆

Автор: Д. В. Мягков

Научный руководитель: д-р физ.-мат. наук, проф. П. А. Рябочкина

Саранск, 2019 г.

АКТУАЛЬНОСТЬ

Применение в сфере безопасности

Люминесцентные лампы

Детектирование излучения

Применение в декоре

ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ

Цель:

исследование морфологии, фазового состава и спектрально-люминесцентных характеристик порошков $La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O_6$ (x = 0,01; 0,03; 0,07, 0,1; 0,15) со структурой розиаита.

Задачи:

1.исследование морфологии порошков La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O₆ (x = 0,01; 0,03; 0,07, 0,1; 0,15) методами лазерного гранулометрического анализа и сканирующей электронной микроскопии;

2.исследование фазового состава порошков La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O₆ (x = 0,01; 0,03; 0,07, 0,1; 0,15) методом рентгеновской дифракции порошков, определение параметров кристаллической решетки этих порошков;

3.исследование спектрально-люминесцентных характеристик порошков $La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O_6$ (x = 0,01; 0,03; 0,07, 0,1; 0,15) методами оптической спектроскопии.

ОБЪЕКТЫ ИССЛЕДОВАНИЯ

Концентрационный ряд $La_{1-x}Nd_xGa_{0.5}Sb_{1.5}O_6$:

1. $La_{0,99}Nd_{0,01}Ga_{0,5}Sb_{1,5}O_6$, 2. $La_{0,97}Nd_{0,03}Ga_{0,5}Sb_{1,5}O_6$, 3. $La_{0,93}Nd_{0,07}Ga_{0,5}Sb_{1,5}O_6$, 4. $La_{0,9}Nd_{0,1}Ga_{0,5}Sb_{1,5}O_6$, 5. $La_{0,85}Nd_{0,15}Ga_{0,5}Sb_{1,5}O_6$.

Метод синтеза

Порошки La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O₆ (x = 0,01; 0,03; 0,07, 0,1; 0,15) синтезированы методом соосаждения с последующим отжигом (650, 900, 1060 °C). Прекурсорами являлись La(NO₃)₃·6H₂O, GaCl₃ в виде 0,8367 М раствора в пентане, Sb₂O₃, Nd(NO₃)₃·6H₂O, HCl и NH₄OH.

Исследуемые образцы получены в лаборатории химической синергетики ИОНХ РАН А. В. Егорышевой.

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ

- 1. Лазерный гранулометрический анализ (лазерный анализатор Shimadzu SALD-3110)
- 1. Сканирующая электронная микроскопия (сканирующий электронный микроскоп Hitachi TM3000)
- 1. Рентгеновская порошковая дифрактометрия (рентгеновский дифрактометр PANalytical Empyrean)

1. Оптическая спектроскопия

(спектрофотометр Perkin Elmer Lambda 950, установка на базе монохроматора МДР-23)

ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЯ ЧАСТИЦ ПОРОШКОВ La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O₆ (x = 0,01; 0,03; 0,07, 0,1; 0,15) ПО РАЗМЕРАМ

Распределения частиц порошков La_{1-x}Nd_xGa_{0.5}Sb_{1.5}O₆ (x = 0,01; 0,15) по размерам

ИССЛЕДОВАНИЕ МОРФОЛОГИИ ПОРОШКОВ La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O₆ (x = 0,01; 0,03; 0,07, 0,1; 0,15)

СЭМ изображения порошков La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O₆ (x = 0,01; 0,15)

ИССЛЕДОВАНИЕ ФАЗОВОГО СОСТАВА ПОРОШКОВ La_{1-x}Nd_xGa_{0.5}Sb_{1.5}O₆ (x = 0,01; 0,03; 0,07, 0,1; 0,15)

1. Порошки $La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O_6$ (x = 0,01; 0,03; 0,07, 0,1; 0,15) изоструктурны.

Q_{HK0}= $\frac{d_{100}^2}{d_{HK0}^2}$ - квадратичная форма для средних сингоний

$$Q_{HK0} = 1, 3, 4, 7, 9, 12, 13, 16, 19, 21 \Rightarrow$$

2. Кристаллическая решетка порошков $La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O_6$ (x = 0,01; 0,03; 0,07, 0,1; 0,15) является гексагональной.

ИССЛЕДОВАНИЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ ⁹ ПОРОШКОВ La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O₆ (x = 0,01; 0,03; 0,07, 0,1; 0,15)

3. Набор межплоскостных расстояний порошков $La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O_6$ (x = 0,01; 0,03; 0,07, 0,1; 0,15) соответствует соединению $LaFe_{0,5}Sb_{1,5}O_6$ со структурой розиаита.

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ КРИСТАЛЛИЧЕСКОЙ ¹⁰ РЕШЕТКИ ПОРОШКОВ La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O₆ (x = 0,01; 0,03; 0,07, 0,1; 0,15)

$$\pi. 2, 3 \Rightarrow \begin{cases} a = \frac{d_{\text{HKO}}}{d_{\text{HKO}}^*} a^* \\ c = \frac{d_{\text{HKO}}}{d_{\text{HKO}}^*} c^* \end{cases},$$

где

а и С – параметры решетки, d – межплоскостное расстояние, величины с * относятся к LaFe_{0,5}Sb_{1,5}O₆, величины без * - к La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O₆.

Образец	a, Å	c, Å
LaFe _{0,5} Sb _{1,5} O ₆	5,245	5,193
La _{0,99} Nd _{0,01} Ga _{0,5} Sb _{1,5} O ₆	5,260±0,001	5,159±0,001
La _{0,97} Nd _{0,03} Ga _{0,5} Sb _{1,5} O ₆	5,260±0,001	5,161±0,001
La _{0,93} Nd _{0,07} Ga _{0,5} Sb _{1,5} O ₆	5,263±0,001	5,173±0,001
La _{0,9} Nd _{0,1} Ga _{0,5} Sb _{1,5} O ₆	5,263±0,001	5,174±0,001
La _{0,85} Nd _{0,15} Ga _{0,5} Sb _{1,5} O ₆	5,265±0,001	5,182±0,001

ИССЛЕДОВАНИЕ СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫХ ¹¹ ХАРАКТЕРИСТИК ПОРОШКОВ $La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O_6$ (x = 0,01; 0,03; 0,07, 0,1; 0,15)

Спектры люминесценции порошков La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O₆ (x = 0,01; 0,03; 0,07, 0,1; 0,15) (T = 300K)

ИССЛЕДОВАНИЕ СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫХ ¹³ ХАРАКТЕРИСТИК ПОРОШКОВ $La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O_6$ (x = 0,01; 0,03; 0,07, 0,1; 0,15)

$$\beta \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2} \right) = \frac{A \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2} \right)}{A \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2} \right) + A \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} \right)}, \quad (1) \qquad A \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2} \right) = \int I \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2} \right) d\lambda, \quad (4)$$

$$\beta \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2} \right) = \frac{A \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2} \right)}{A \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2} \right) + A \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} \right)}, \quad (2) \qquad A \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2} \right) = \int I \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2} \right) d\lambda, \quad (5)$$

(6)

$$\beta \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} \right) = \frac{A \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} \right)}{A \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2} \right) + A \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} \right)}, \quad (3) \qquad A \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} \right) = \int I \left({}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2} \right) d\lambda$$

Образец	$\beta({}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2})$	$\beta({}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2})$	$\beta({}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2})$
La0,99Nd0,01Ga0,5Sb1,5O6	0,49±0,05	0,47±0,05	0,03±0,01
La0,97Nd0,03Ga0,5Sb1,5O6	0,49±0,05	0,47±0,05	0,04±0,01
La0,93Nd0,07Ga0,5Sb1,5O6	0,46±0,05	0,49±0,05	0,06±0,01
La0,9Nd0,1Ga0,5Sb1,5O6	0,43±0,05	0,49±0,05	0,07±0,01
La0,85Nd0,15Ga0,5Sb1,5O6	0,47±0,05	0,46±0,05	0,07±0,01

РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Методом лазерного гранулометрического анализа порошков La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O₆ (x = 0,01; 0,03; 0,07, 0,1; 0,15) выявлено наличие трех фракций частиц с размерами, соответствиующими областям 0,10-0,15; 0,3-1; 1,3-7 мкм. При увеличении концентрации ионов Nd³⁺ возрастает относительная доля частиц с размером 1,5-3,5 мкм.

- 1.Методом рентгеновской дифракции выявлено, что соединения $La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O_6$ (x = 0,01; 0,03; 0,07, 0,1; 0,15) являются изоструктурными и характеризуются структурой розиаита. Определены параметры решетки концентрационного ряда $La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O_6$ (x = 0,01; 0,03; 0,07, 0,1; 0,15) и показано, что они возрастают при увеличении концентрации ионов Nd^{3+} .
- 1.Зарегистрированы спектры люминесценции порошков $La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O_6$ (x = 0,01; 0,03; 0,07, 0,1; 0,15), обусловленные переходами с уровня ${}^{4}F_{3/2}$ на мультиплеты ${}^{4}I_{9/2}$, ${}^{4}I_{11/2}$, ${}^{4}I_{11/2}$, ионов Nd^{3+} . Из полученных спектров найдены коэффициенты ветвления люминесценции межмультиплетных переходов ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$, ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$, ${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$.
- 1.Выявлено перераспределение относительных интенсивностей линий в спектрах люминесценции оптических переходов ⁴F_{3/2}→⁴I_{9/2}, ⁴F_{3/2}→⁴I_{11/2} ионов Nd³⁺ для порошков La_{1-x}Nd_xGa_{0,5}Sb_{1,5}O₆ с различной концентрацией ионов Nd³⁺, что связано с особенностями их локального окружения, обусловленными, по-видимому, условиями их синтеза.

СПАСИБО ЗА ВНИМАНИЕ!

ХАРАКТЕРИСТИКИ ЭКСПЕРИМЕНТАЛЬНЫХ УСТАНОВОК

15

1. Лазерный гранулометрический анализ

(лазерный анализатор <u>Shimadzu SALD-3110</u>, измеряемый диапазон размеров частиц: 0,5 ÷3000 мкм, длина волны лазерного излучения: 690 нм)

1. Сканирующая электронная микроскопия

(сканирующий электронный микроскоп <u>Hitachi TM3000</u>, диапазон кратности увеличения: 15÷3×10⁴, разрешение: 30 нм, ускоряющее напряжение: 5, 15 кВ)

1. Рентгеновская порошковая дифрактометрия

(рентгеновский дифрактометр <u>PANalytical Empyrean</u>, излучение: CuKa, длина волны: 1,5414 Å, угловой диапазон (2θ): -111°÷168°, разрешение (Δ2θ): 10⁻⁴°)

1. Оптическая спектроскопия

(спектрофотометр <u>Perkin Elmer Lambda 950</u>, диапазон сканирования: 200÷2500 нм, разрешение: 0,2 нм для БИК диапазона и 0,05 нм для УФ и видимого диапазонов; установка регистрации спектров люминесценции на базе монохроматора <u>МДР-23</u>, спектральный диапазон: 200÷2000 нм, источник возбуждения: п/п лазерный диод с $\lambda =$ 808 нм, приемник: фотодиод ФД-7Г (спектральный диапазон: 800-1800 нм))

СХЕМЫ ЭКСПЕРИМЕНТАЛЬНЫХ УСТАНОВОК

Оптическая схема спектрофотометра Perkin Elmer Lambda 950

СХЕМЫ ЭКСПЕРИМЕНТАЛЬНЫХ УСТАНОВОК

17

Блок-схема установки для регистрации спектров люминесценции,

где 1 – источник излучения, 2 – модулятор, 3 – исследуемый образец, 4 – фокусирующая оптика, 5 – монохроматор, 6 – шаговый двигатель, 7 – реперное устройство, 8 – блок согласования, 9 – фотоприемник, 10 – блок управления, 11 – ЭВМ, 12-17 элементы системы управления

СХЕМЫ ЭКСПЕРИМЕНТАЛЬНЫХ УСТАНОВОК

18

Схема лазерного дифракционного анализатора, где

1 – лазер, 2 – блок формирования луча (расширитель), 3 – частицы, взвешенные в образце, 4 – линза, 5 – нерассеянный луч, 6 – рассеянное излучение, 7 – многоэлементное фотоприемное устройство, θ – угол рассеяния, f – фокусное расстояние линзы