

Тема: Алгоритмы обработки одномерных массивов.

Алгоритмы обработки одномерных массивов.

В математике, экономике, информатике часто используются упорядоченные наборы данных. Например, последовательности чисел, таблицы, списки фамилий. Для обработки наборов данных одного типа вводится понятие массива.

Например, можно создать массив для хранения списка студентов, обучающихся в одной группе.

Вместо создания переменных для каждого студента, например Студент1, Студент2 и т.д., достаточно создать один массив, где каждой фамилии из списка будет присвоен порядковый номер.

Алгоритмы обработки одномерных массивов.

Массив – структурированный тип данных, состоящий из фиксированного числа элементов одного типа.

Чтобы использовать массивы, потребуется предварительное описание определенного типа и указание доступа к элементам.

Элементы массива объединены общим именем.

Если требуется обратиться к определенному элементу массива, то достаточно указать имя и в скоках индекс.

В математике есть понятный пример массива — это векторы и последовательности чисел, в которых группа чисел может обозначаться одним именем.

Алгоритмы обработки одномерных массивов.

12.1	0.13	-1,5	0	21.9	-3.7	5.0	121.7
1-й	2-й	3-й	4-й	5-й	6-й	7-й	8-й
элемент							
массива							

Массив на рисунке имеет 8 элементов, каждый элемент сохраняет число вещественного типа.

Элементы в массиве пронумерованы от 1 до 8.

Массив, представляющий собой просто список данных одного и того же типа, называют *одномерным* массивом.

Для доступа к данным, хранящимся в определенном элементе массива, необходимо указать *имя массива и порядковый номер этого элемента, называемый индексом.* Например: X[i], X[0], X[i+1]

двумерный массив

Если возникает необходимость хранения данных в виде таблиц, в формате строк и столбцов, то необходимо

использовать двумерные массивы.

На рисунке приведен массив, состоящий из четырех строк и четырех столбцов. Строки в массиве можно считать

первым измерением, а столбцы вторым.

		Номера столбцов			
		1	2	3	4
	1	3.5	7.8	1.3	0.6
Номера	2	-1.4	0.3	0	12.1
строк	3	-5.7	-0.78	5.0	6.9
	4	45.1	124.0	-24.7	0.96

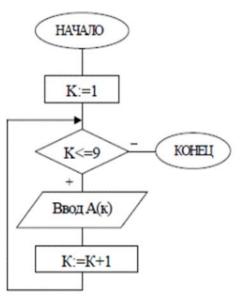
двумерный массив

Для доступа к данным, хранящимся в двумерном массиве, необходимо указать

имя массива и два индекса,

первый должен соответствовать номеру строки, а второй номеру столбца в которых хранится необходимый элемент.

Например: A[i,j] обозначение элемента в цикле , A[1,1] — элемент, находящийся на 1 строке в первом столбце


Ввод-вывод элементов одномерного массива

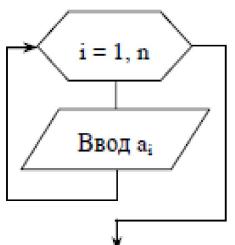
При вводе массива необходимо последовательно вводить 1-й, 2-й, 3-й и т.д. элементы массива, аналогичным образом поступить и при выводе.

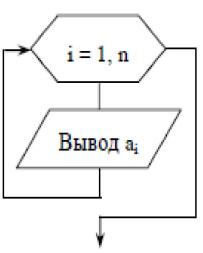
необходимо организовать цикл

Алгоритм ввода

K	K<=9 ?	Ввод A[k]
1	1<=9 да	A[1] = 20
2	2<=9 да	A[1] = -3
3	3<=9 да	A[1] = 2
4	4<=9 да	A[1] = -5
5	5<=9 да	A[1] = -10
6	6<=9 да	A[1] = -1
7	7<=9 да	A[1] = 0
8	8<=9 да	A[1] = 0
9	9<=9 да	A[1] = 7
10	10<=9 нет	

массива А, состоящего из 9 элементов, с использованием цикла


«пока»


Ввод-вывод элементов одномерного массива

Алгоритм ввода массива с использованием цикла со счетчиком

Как видно, цикл со счетчиком удобно использовать для обработки всего массива, и в дальнейшем при выполнении таких операций будем применять именно его.

Вывод массива организуется аналогично вводу.

Алгоритмы обработки массивов Вычисление суммы элементов массива

 $S = S + X_i$

1. Дан массив X, состоящий из n элементов. Найти сумму элементов этого массива.

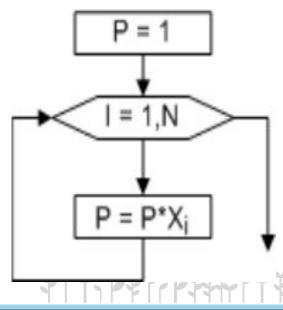
Процесс накапливания суммы элементов массива достаточно прост и практически ничем не отличается от суммирования значений некоторой числовой последовательности.

Переменной S присваивается значение равное нулю, затем последовательно

суммируются элементы массива X.

Выполнить трассировку алгоритма для массива х= {1,-5,3,14,-1,-1}

Вычисление произведения элементов массива



2 Дан массив X, состоящий из n элементов. Найти произведение элементов этого массива.

Решение этой задачи сводится к тому, что значение переменной Р, в которую предварительно была записана единица, последовательно умножается

на значение і-го элемента массива.

Выполнить трассировку алгоритма Для массива $x = \{1,-5, 3, 14,-1,-1\}$

Вычисление произведения элементов массива

Большинство задач на обработку массива, какое бы содержание они не имели, сводятся к комбинированию следующих алгоритмов:

Основная классификация обработки элементов массива:

- 1. задачи заполнения;
- 2. задачи подсчета
- 3. задачи анализа;
- 4. задачи поиска;
- 5. задачи перестановки.
- 6. сортировка массива
- 7. вставка и удаление элементов массива

Поиска максимального элемента в массиве и его номера

Дан массив X, состоящий из n элементов. Найти максимальный элемент массива и номер, под которым он хранится в массиве.

Алгоритм решения задачи следующий.

Пусть в переменной с именем **Max** хранится значение максимального элемента массива, а в переменной с именем **Nmax** – его номер.

Поиска максимального элемента в массиве и его номера

Предположим, что первый элемент массива является максимальным, и запишем его в переменную **Max**, а в **Nmax** занесем его номер, то есть 1.

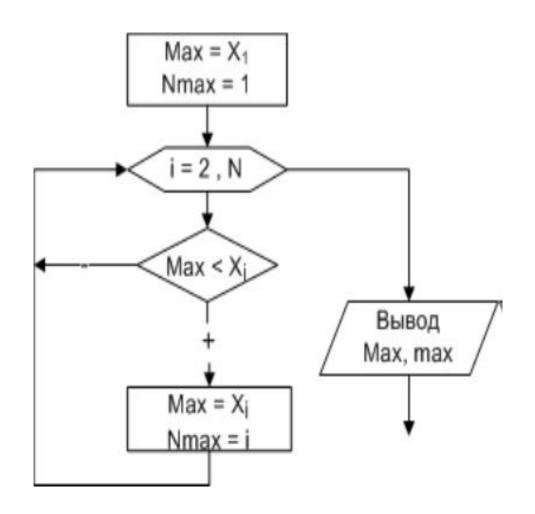
Затем все элементы, начиная со второго, сравниваем в цикле с максимальным.

Если текущий элемент массива оказывается больше максимального, то записываем его в переменную **Max**, а в переменную **Nmax** – текущее значение индекса і.

Поиск максимального элемента и его номера в массиве

Алгоритм поиска

элемента в массиве


будет отличаться

от приведенного

лишь тем, что в

минимального

Выполнить трассировку

условном блоке знак поменяется с > на <. В алгоритме есть ошибка. Какая?

алгоритма

Проверка работоспособности алгоритма

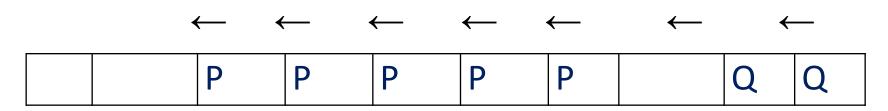
Определить максимальный элемент и его номер в массиве $x = \{1,-5, 3, 14,-1,-1\}$

Max	Nmax	i	I <=N ?	Max < X[i] ?
		2		

Задание

Задан массив Y(n). Определить среднее арифметическое значение нечетных элементов, произведение отрицательных элементов и количество нулевых.

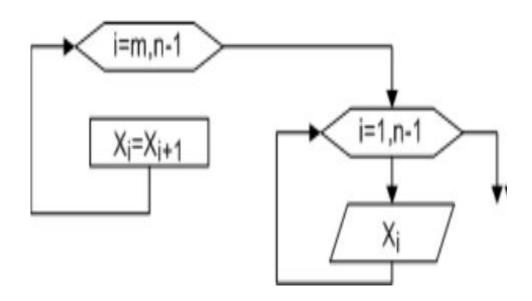
Процесс удаления элемента из массива



Необходимо удалить из массива X, состоящего из n элементов, m-й по номеру элемент.

Для этого достаточно записать элемент (m+1) на место элемента m, (m+2)— на место (m+1) и т.д.,

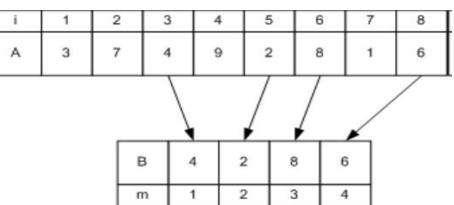
n— на место (n—1) и при дальнейшей работе с этим массивом использовать n—1 элемент



Алгоритм удаления элемента из массива

Выполнить трассировку алгоритма для массива $x = \{1,-5, 3, 14,-1,-1\}$ если m = 4

Примеры алгоритмов обработки массивов


Дан массив A состоящий из k целых положительных чисел.

Записать все четные по значению элементы массива А в массив В.

Решение. Последовательно перебираются элементы массива

А. Если среди них находятся четные, то они записываются в

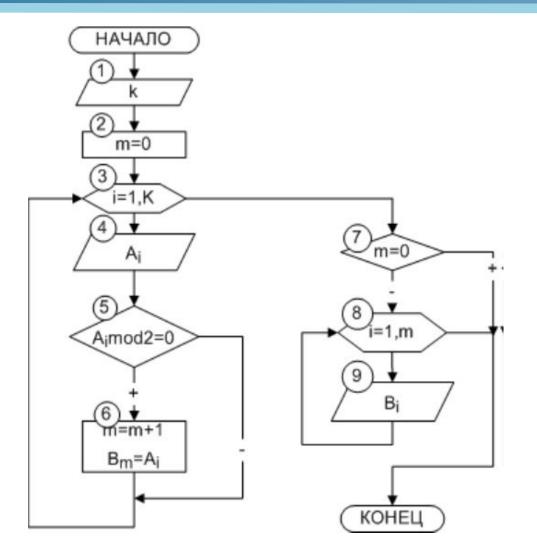
массив В.

На рисунке видно, что первый четный элемент хранится в массиве А под номером три, второй и третий под номерами пять и шесть соответственно, а четвертый под номером

Примеры алгоритмов обработки массивов

В массиве В этим элементам присваиваются совершенно иные номера.

Поэтому для их формирования необходимо определить дополнительную переменную m (индекс массива В).



Процесс формирование массива В из элементов массива A

Выполнить трассировку алгоритма

Процесс формирование массива В из элементов массива А

Операция, выполняемая в блоке 2, означает, что в массиве может не быть искомых элементов.

Если же условие в блоке 5 выполняется, то переменная m увеличивается на единицу, а значение элемента массива A записывается в массив B под номером m (блок 6).

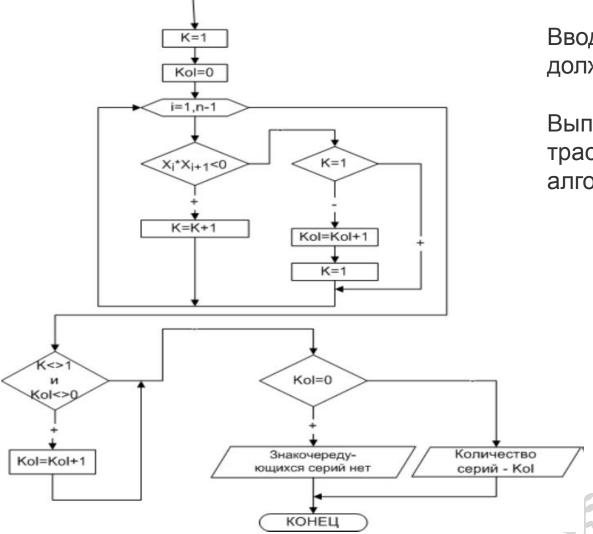
Условный блок 7 необходим для того, чтобы проверить выполнилось ли хотя бы раз условие поиска (блок 5).

Алгоритм 6

Определить есть ли в заданном массиве серии элементов, состоящих из знакочередующихся чисел (рис. 21).

Если есть, то вывести на экран количество таких серий

Пусть


переменная k – количество элементов, попадающих в серию, kol –количество знакочередующихся серий в массиве.

Алгоритм 6

Ввод массива должен быть выше

Выполнить трассировку алгоритма

