Сегодня: понедельник, 26 сентября 2022

Лекция 5

Работа, мощность, энергия. Закон сохранения энергии **Энергия** — количественная мера движения материи в различных формах этого движения.

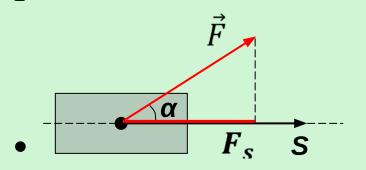
С различными формами движения материи связывают различные формы энергии.

Механическая энергия — мера механического движения, перемещения и взаимодействия сил.

Механическая работа — мера перехода механической энергии от одного тела к другому.

Работа

Прямолинейное движение



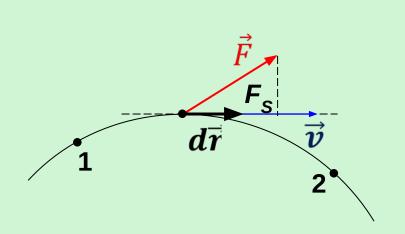
$$A = |\vec{F}| \cdot |\vec{S}| \cos \alpha, (1)$$
$$|d\vec{r}| = dS. (2)$$

С течением времени вектор F может меняться по модулю и по направлению. Поэтому рассматривается элементарное перемещение $d\vec{r}$, на котором F = const, а движение точки (тела) прямолинейное. Следовательно, элементарная работа:

$$dA = (\vec{F}, d\vec{r}) = Fdr \cos \alpha = F_S dr$$

скалярная величина.

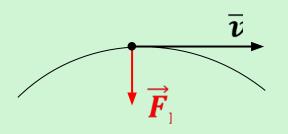
Движение по участку траектории

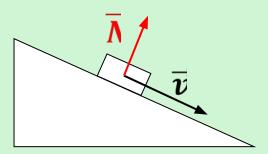


$$A_{12} = \int_{r_1}^{r_2} (\vec{F}d\vec{r}) = \int_{1}^{2} F_S dS.$$

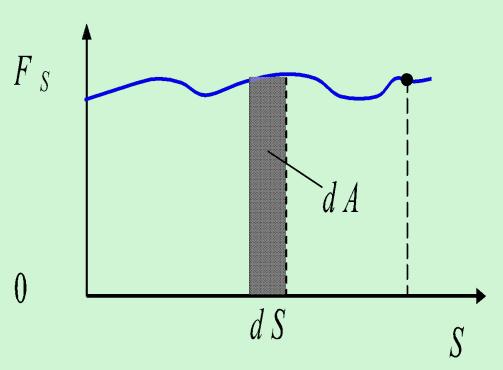
 $\mathbf{F}_{\mathcal{S}}$ – проекция \vec{F} на вектор перемещения $d\vec{r} = \vec{v}dt$.

Движение по участку траектории на которых А=0





$$\vec{F} \perp d\vec{r} \Rightarrow A = 0$$



При графическом изображении $F_{S}(S)$ работа равна площади под кривой.

Система СИ:

[A] = джоуль, Дж.

1 Дж равен работе, совершаемой силой в 1 Н на пути 1 м,

 $1 Дж = 1 H \cdot 1 м.$

Мощность

Мощность (механизма или машины) — работа, совершаемая за единицу времени. Характеризует скорость совершения работы. Скалярная величина.

$$N = \frac{dA}{dt} = \frac{d(\vec{F} \cdot \vec{r})}{dt} = \vec{F} \frac{d\vec{r}}{dt} = \vec{F} \cdot \vec{v}(t)$$
 — мгновенная мощность.

$$N_{\rm cp} = \frac{A}{t}$$
— средняя мощность.
Система СИ: [N] = ватт, Вт; 1
Вт = 1 Дж / 1 с.

Кинетическая энергия

Кинетическая энергия механической системы — энергия механического движения этой системы.

Сила вызывает движение тел и совершает работу

$$dA = (\vec{F}, d\vec{r}).$$
 (1)
Второй з. Ньютона: $\vec{F} = m \frac{d\vec{v}}{dt}.$ (2)

$$dA = m\frac{d\vec{v}}{dt} \cdot d\vec{r} = m\frac{d\vec{r}}{dt} \cdot d\vec{v}$$

$$\vec{v} = \frac{d\vec{r}}{dt}(4)$$

$$dA = m\vec{v} \cdot d\vec{v}.(5)$$

$$dA = mvdv. (7)$$

$$A_{12} = \int_{v_1}^{v_2} mvdv = \left(\int x^n dx = \frac{x^{n+1}}{n+1}\right) =$$

$$= m \int_{v_1}^{v_2} vdv = \frac{mv^2}{2} \Big|_{v_1}^{v_2} = \frac{mv_2^2}{2} - \frac{mv_1^2}{2}. (8)$$

• Работа A силы F пошла на увеличение скорости тела от v_1 до v_2 , увеличение его кинетической энергии $E_{\kappa} = \frac{mv^2}{2}$.

$$A_{12} = E_{K2} - E_{K1} = \Delta E_{K}.(9)$$

 $dA = dE_{\kappa}$ – справедливо как для одного тела, так и для системы тел.

$$E_{K} = \sum_{i=1}^{n} \frac{m_i v_i^2}{2}.$$

Использовался второй закон Ньютона, т.е. движение в ИСО. В разных ИСО, движущихся относительно друг друга, скорость тела различная, следовательно, различна и кинетическая энергия E_{κ} .

Консервативные силы

Консервативные силы — силы, работа которых не зависит от формы пути (траектории), а только от начального и конечного положения точек траектории.

$$A_{1a2} + A_{2b1} = 0 \Rightarrow A_{1a2} = -A_{2b1}$$
.

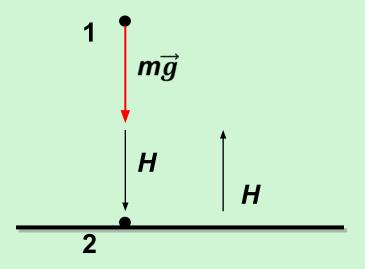
Примеры консервативных сил (силовых полей):

$$\mathbf{1}. F_{\text{тяжести}} = mg$$

2.
$$F_{\text{упругости}} = -kx$$

3.
$$F_{\text{Кулона}} = k \frac{|q_1| \cdot |q_2|}{r^2}$$

Сила тяжести



$$A_{12} = FH \cos \alpha = mgH \cos 0^0 = mgH,$$

$$A_{21} = mgH \cos 180^0 = -mgH \Rightarrow A = A_{12} + A_{21} = 0.$$

Сила упругости

В одномерном случае F(x)

$$F = -kx; dA = Fdx \Rightarrow dA = -kxdx \Rightarrow$$

$$A_{12} = -\int_{x_1}^{x_2} kxdx = \frac{kx^2}{2} \Big|_{x_2}^{x_1} = \frac{k|x_1^2 - x_2^2|}{2} \Rightarrow$$

Работа зависит от начального и конечного положения $(x_1; x_2)$.

Если
$$x_1 = x_2$$
, то $A = 0$.

Диссипативные силы — силы, работа которых зависит от траектории перемещения тел.

Пример: сила трения.

Потенциальная энергия

Потенциальная энергия — энергия системы тел, зависящая от взаимного расположения или их составных частей.

Взаимодействие тел в системе осуществляется посредством силовых полей.

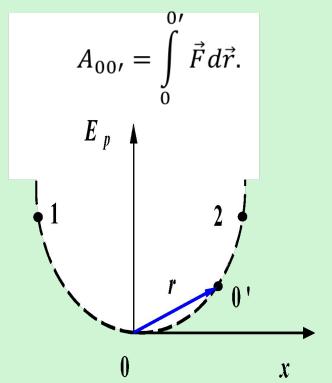
Поля консервативных сил называются потенциальными.

Тело, находящееся в потенциальном поле другого тела, обладает потенциальной энергией.

• $E_p = mgh$ — потенциальная энергия в поле тяготения.

$$E_p = \frac{kx^2}{2}$$
 — потенциальная энергия упруго деформированного тела.

Рассмотрим поле консервативных сил.



• Так как работа консервативных сил не зависит от формы пути, то при перемещении тела из 0 в 0' можно ввести понятие потенциальной энергии: A_{00} , $= E_p$; $E_{p0} = 0$.

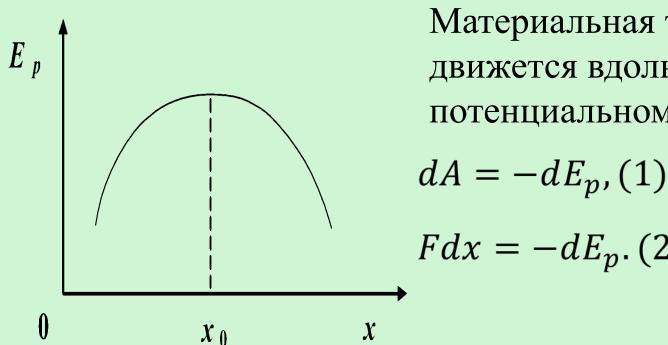
Пусть перемещаем материальную точку из точки 1 в точку 2. При перемещении работа будет равна:

$$A_{12} = A_{10} + A_{02}$$
, (1)
 $A_{02} = -A_{20}$. (2) $\Rightarrow A_{12} = A_{10} - A_{20}$. (3)

$$A_{12}=A_{10}-A_{20}.$$
 (3) $A_{10}=E_{p1},$ (4) $A_{20}=E_{p2}.$ (5) $A_{12}=E_{p1}-E_{p2},$ (6) $\Delta E_p=E_{p2}-E_{p1}.$ (7) $\Rightarrow A_{12}=-\Delta E_p,$ (8) $dA=-dE_p(9)$ — для бесконечно малых.

Работа консервативны сил равна изменению потенциальной энергии, взятому с противоположным знаком. Выражения (8), (9) справедливы как для одного тела, находящегося в поле консервативных сил, так и для системы тел.

Связь потенциальной энергии и силы



Материальная точка движется вдоль оси х в потенциальном поле $E_{p}(x)$.

$$Fdx = -dE_p.(2) \Rightarrow F = -\frac{dE_p}{dx}$$

Сила есть первая производная от потенциальной энергии по координате, взятая с обратным знаком. В общем случае трехмерного пространства:

$$F_x = -\frac{\partial E_p}{\partial x}$$
; $F_y = -\frac{\partial E_p}{\partial y}$; $F_z = -\frac{\partial E_p}{\partial z}$.

В векторном виде:

$$\vec{F} = -gradE_p = -\nabla E_p,$$

$$grad = \nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k},$$

∇– набла (оператор Гамильтона).

Уравнение (2) в общем виде: $\vec{F}d\vec{r} = -dE_p$.

$$\int \vec{F} d\vec{r} = \int -dE_p \Rightarrow E_p = -\int \vec{F} d\vec{r} + C,$$

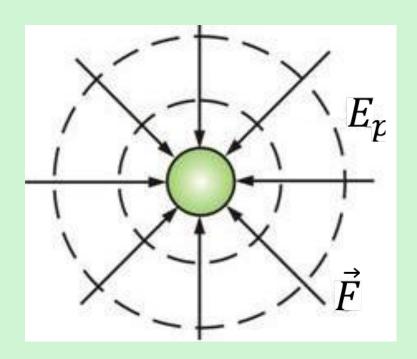
С – константа интегрирования.

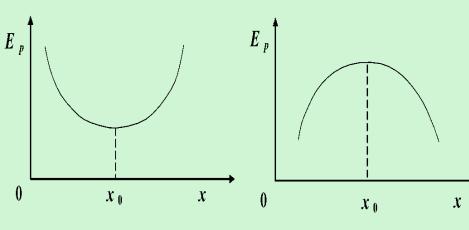
Т.е. E_p определяется с точностью до C, но это не влияет на результат, так в первую очередь интересует ΔE_p .

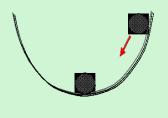
Потенциальную энергию системы в каком-то состоянии считают равной нулю (выбирают нулевой уровень отсчета). Энергию системы в других состояниях отсчитывают от этого нулевого уровня.

$$F = -\frac{dE_p}{dx}$$

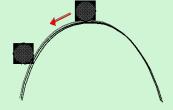
Знак "—" отражает то, что сила F направлена в сторону уменьшения потенциальной энергии.







а) устойчивое равновесие



б) неустойчивое равновесие

B точке x_0 :

$$\frac{dE_p}{dx} = 0 \Rightarrow F = 0 \Rightarrow$$

тело в равновесии.

Тело находится в положении устойчивого равновесия, если потенциальная энергия тела минимальная.

Этот вывод распространяется и на систему тел.

Потенциальное поле – поле консервативных сил.

$$E = E_{K} + E_{p}(1)$$

полная механическая энергия системы.

$$dA = dE_{\kappa}(2)$$

совершается работа, идущая на увеличение $E\kappa$.

$$dA = F \cdot dx = -dE_p(3)$$

-связь силы и потенциальной энергии

$$F = -\frac{dE_p}{dx}$$
.

$$d(E_{\kappa} + E_{p}) = d(A - A) = 0.$$
 (4) $\Rightarrow dE = 0 \Rightarrow E = const.$

Полная механическая энергия материальной точки (тела, частицы), находящейся в потенциальном поле (в консервативной системе), есть величина постоянная, т.е. с течением времени не меняется.

Потенциальные кривые

Одномерное движение тела (материальной точки). В этом случае Ep является функцией лишь одной переменной (например, координаты x) – Ep (x).

График зависимости Ep от некоторого аргумента называется *потенциальной кривой*.

Анализ потенциальных кривых определяет характер движения тел.

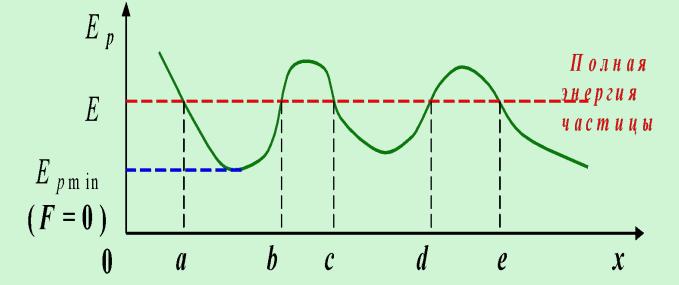
Рассмотрим консервативную систему, т.е. систему, в которой превращение механической энергии в другие виды отсутствует.

В ней действует закон сохранения энергии:

$$E = E_{\kappa} + E_{p}.$$

Кинетическая энергия не может быть отрицательной, потому $E_{\rm kmin}$

Для частиц (материальных точек) $E_p(x) \le E$



- Области (*ab*); (*cd*): частица находится в *потенциальной яме* и совершает движение в ограниченной области пространства финитное движение (ограниченное).
- Области (bc); (de) содержат *потенциальный барьер*. Частица в этой области находиться не может.
- Т.е. классическая частица потенциальный барьер преодолеть не может.
- Область ($e + \infty$): частица может уйти как угодно далеко *инфинитное движение* (неограниченное).

Закон сохранения энергии в механике

Рассмотрим механическую систему, состоящую из n материальных точек массой m_i , движущихся со скоростями v_i . $F_{i \text{ конс}}^{\text{внутр}}$ внутренние консервативные силы.

 $F_{i \text{ конс}}^{\text{внеш}}$ – внешние консервативные силы.

 $F_{i \text{ неконс}}^{\text{внеш}}$ – внешние неконсервативные силы.

Второй закон Ньютона для i точки:

$$m_i \frac{d\vec{v}_i}{dt} = \vec{F}_{i \text{ конс}}^{\text{внутр}} + \vec{F}_{i \text{ конс}}^{\text{внеш}} + \vec{F}_{i \text{ неконс}}^{\text{внеш}}. (1)$$

Под действием силы точка за время dt совершает перемещение dr_i :

$$m_i d\vec{v}_i \frac{d\vec{r}_i}{\underbrace{dt}} = \left(\vec{F}_{i \text{ KOHC}}^{\text{BHYTP}} + \vec{F}_{i \text{ KOHC}}^{\text{BHEШ}} + \vec{F}_{i \text{ HEKOHC}}^{\text{BHEШ}}\right) d\vec{r}_i. (2)$$

$$m_i(\vec{v}_i d\vec{v}_i) - (\vec{F}_{i \text{ KOHC}}^{\text{BHYTP}} + \vec{F}_{i \text{ KOHC}}^{\text{BHEW}}) d\vec{r}_i = \vec{F}_{i \text{ HEKOHC}}^{\text{BHEW}} d\vec{r}_i. (3)$$

Суммируя по всем точкам, получаем:

$$\sum_{i=1}^{n} \underbrace{\frac{m_{i}(\vec{v}_{i}d\vec{v}_{i})}{dv_{i}^{2}}_{m_{i}\frac{dv_{i}^{2}}{2} = d(\frac{m_{i}v_{i}^{2}}{2})}_{m_{i}\frac{dv_{i}^{2}}{2} = d(\frac{m_{i}v_{i}^{2}}{2})} - \sum_{i=1}^{n} \underbrace{(\vec{F}_{i \text{ конс}}^{\text{внутр}} + \vec{F}_{i \text{ конс}}^{\text{внеш}})d\vec{r}_{i}}_{\text{работа конс-х сил}} = \sum_{i=1}^{n} \underbrace{\vec{F}_{i \text{ неконс}}^{\text{внеш}}d\vec{r}_{i}}_{\text{работа внеш-х неконс-х сил}}. (4) \Rightarrow \sum_{i=1}^{T} d(\frac{m_{i}v_{i}^{2}}{2}) = dE_{\text{K}}$$

$$d \ (E_{K} + E_{p}) = dA. (5)$$
изменение полной мех. энергии сист.

При переходе системы из одного состояния в другое:

$$\int_{1}^{2} d\underbrace{\left(E_{K} + E_{p}\right)}_{E} = A_{12}$$

работа, совершаемая внешними неконсервативными силами.

Если внешние неконсервативные силы отсутствуют, т.

e.
$$A_{12} = 0 \Rightarrow dE = 0$$
, (6) $\Rightarrow E = const.$ (7)

Полная механическая энергия консервативной системы есть величина постоянная, с течением времени не меняется.

Консервативной системой называется механическая система, внутренние силы которой консервативны, а внешние силы — консервативны и стационарны.

Закон сохранения механической энергии связан с однородностью времени, т.е. физические законы инвариантны относительно начала отсчета времени.

Замкнутая система – частный случай.

В этом случае внешние силы не рассматриваются, т.е.

 $F_{\rm BHem} = 0 \Rightarrow E = {\rm nomstas}$ механическая энергия системы. Происходит превращение $Ep \to E\kappa$, и обратно $E\kappa \to Ep$.

Наряду с консервативными силами в системе могут существовать неконсервативные силы (диссипативные, например, F_{mp}).

В этом случае с течением времени полная механическая энергия системы уменьшается.

Но механическая энергия не исчезает, она переходит в другие виды энергии, например, при F_{mp} во внутреннюю энергию.

Закон сохранения энергии в механике является частным случаем фундаментального (всеобщего) закона сохранения энергии:

сумма всех видов энергии в замкнутой системе постоянна

$$\sum E_i = const.$$

Применение законов сохранения импульса и энергии для анализа упругого и неупругого ударов шаров

Удар — кратковременное взаимодействие двух или более тел.

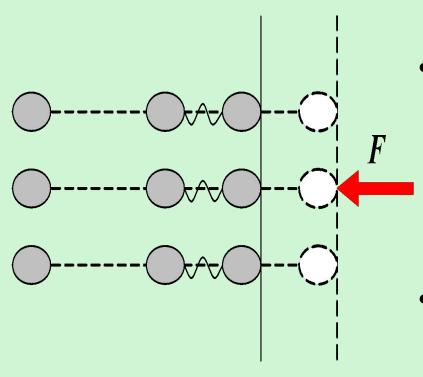
Центральный удар (двух шаров) — удар, при котором движение происходит по прямой, соединяющей центры тел.

Сила взаимодействия при ударе тел велика

$$\Delta t o 0 \Rightarrow rac{dv}{dt} o \infty; mrac{dv}{dt} = F -$$
 велика

следовательно, внешними силами, действующими на тело, можно пренебречь. Поэтому систему тел в процессе удара можно рассматривать как замкнутую систему и применять к ней законы сохранения.

Тело во время удара претерпевает деформацию. Кинетическая энергия во время удара переходит в энергию деформации.



• Если деформация упругая, то тело стремится принять прежнюю форму. Следователь, имеем упругий удар.

• Если деформация неупругая, то тело не принимает прежнюю форму — *неупругий удар*.

Во время удара происходит перераспределение энергии между соударяющимися телами.

В общем случае относительная скорость тел после удара не достигает своего прежнего значения, т.к. нет идеально упругих тел.

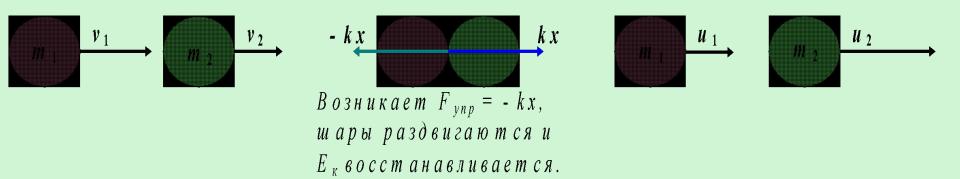
Коэффициент восстановления — отношение нормальных составляющих относительной скорости после удара u_n и до удара v_n :

$$\varepsilon = \frac{u_n}{v_n}.$$

 $\varepsilon = 1$ – абсолютно упругий удар.

 $\varepsilon = 0$ – абсолютно неупругий удар.

Абсолютно упругий удар — удар, при котором внутренняя энергия соударяющихся тел не изменяется.



Закон сохранения импульса:

$$m_1v_1 + m_2v_2 = m_1u_1 + m_2u_2.$$
 (1)

Закон сохранения энергии:

$$\frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} = \frac{m_1 u_1^2}{2} + \frac{m_2 u_2^2}{2}.(2)$$

$$m_{1}(v_{1}-u_{1})=m_{2}(u_{2}-v_{2}).$$
 (3)
 $\frac{m_{1}}{2}(v_{1}^{2}-u_{1}^{2})=\frac{m_{2}}{2}(u_{2}^{2}-v_{2}^{2}).$ (4)
 $\frac{y_{\mathrm{равнение}(4)}}{3}$ \Rightarrow
 $v_{1}+u_{1}=u_{2}+v_{2}.$ (5) \Rightarrow
 $u_{2}=v_{1}+u_{1}-v_{2}.$ (6)

Уравнение (6) \rightarrow (1):
 $m_{1}v_{1}+m_{2}v_{2}=m_{1}u_{1}+m_{2}v_{1}+m_{2}u_{1}-m_{2}v_{2}.$ (7) \Rightarrow
 $u_{1}=\frac{2m_{2}v_{2}+(m_{1}-m_{2})v_{1}}{m_{1}+m_{2}}.$ (8)

Уравнение (8) \rightarrow (6) \Rightarrow

$$u_2 = \frac{2m_1v_1 + (m_2 - m_1)v_2}{m_1 + m_2}.(9)$$

•
$$m_2 >> m_1$$
; $v_2 = 0 \Rightarrow u_1 = \frac{2 \underbrace{m_2 v_2}_{2} - m_2 v_1}{m_2} = -v_1$,
$$u_2 = \frac{2m_1 v_1 + (m_2 - 0) \underbrace{v_2}_{0}}{m_2} = 2 \frac{m_1}{m_2} v_1 \approx 0.$$

$$m_2 = m_2 v_2 = 2m_1 v_1$$

 $p_2 = m_2 u_2 = 2m_1 v_1$.

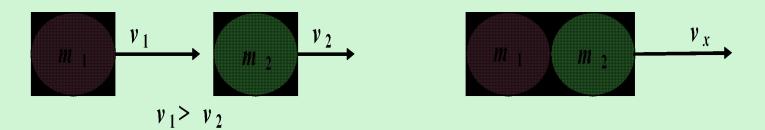
•
$$m_2 >> m_1$$
; $v_2 < 0 \Rightarrow u_1 = \frac{-2m_2v_2 - m_2v_1}{m_2}$

•
$$m_2 >> m_1; v_2 > 0 \Rightarrow u_1 = 2v_2 - v_1; u_1$$
 = 0если $v_2 = \frac{v_1}{2}$.

•
$$m_2 = m_1 \Rightarrow u_1 = v_2$$
; $u_2 = v_1$.

При одинаковых массах происходит обмен скоростями.

Абсолютно неупругий удар — удар, при котором полная механическая энергия соударяющихся тел не сохраняется, частично переходит во внутреннюю энергию; импульс сохраняется.



При абсолютно неупругом ударе тела после удара двигаются с одинаковой скоростью.

$$m_1 v_1 + m_2 v_2 = (m_1 + m_2) v_{\chi}.$$
 (1)

$$\frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} - \frac{(m_1 + m_2)v_x^2}{2} = Q.(2)$$

Из уравнения (1)
$$\Rightarrow v_{\chi} = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$
. (3)

• Наковальня

$$m_2 >> m_1; v_2 = 0 \Rightarrow v_x = \frac{m_1 v_1 + 0}{0 + m_2} \cong 0.$$

Вся энергия переходит в теплоту или деформацию.

$$v_{\chi} = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}.(3)$$

• Удар молотка по гвоздю.

$$m_1 >> m_2; v_2 = 0 \Rightarrow v_x = v_1.$$

Вся энергия переходит в механическую энергию.