Излучение

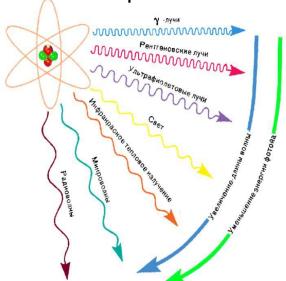
Электромагнитное излучение (ЭМИ)

Электромагнитное излучение (ЭМИ) — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.

Среди электромагнитных полей, порождённых электрическими зарядами и их движением, принято относить к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

Электромагнитный спектр подразделяется на:

- радиоволны (начиная со сверхдлинных)
 - микроволновое излучение
 - терагерцевое излучение
 - инфракрасное излучение
 - видимое излучение (свет)
 - ультрафиолетовое излучение
 - рентгеновское излучение
 - жёсткое (гамма-излучение)


Характеристики электромагнитно го излучения

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию.

Длина волны прямо связана с частотой через (групповую) скорость распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света.

Основные свойства электромагнитных волн

• Электромагнитные волны излучаются **колеблющимися** зарядам. **Наличие ускорения** - главное условие излучения электромагнитных волн.

Диапазоны электромагнитного излучения

Название диапазона		Длины волн, λ	Частоты, <i>f</i>	Источники
Радиоволны	Сверхдлинные	более 10 км	менее 30 кГц	Атмосферные и магнитосферные явления. Радиосвязь.
	Длинные	10 км — 1 км	30 кГц — 300 кГц	
	Средние	1 км — 100 м	300 кГц — 3 МГц	
	Короткие	100 м — 10 м	3 МГц — 30 МГц •	
	Ультракороткие	10 м — 1 мм	30 МГц — 300 ГГц ^[4]	
Инфракрасное излучение		1 мм — 780 нм	300 ГГц — 429 ТГц	Излучение молекул и атомов при тепловых и электрических воздействиях.
Видимое излучение		780 нм — 380 нм	429 ТГц — 750 ТГц	
Ультрафиолетовое		380 нм — 10 нм	7,5·10 ¹⁴ Гц — 3·10 ¹⁶ Гц	Излучение атомов под воздействием ускоренных электронов.
Рентгеновское		10 нм — 5 пм	3·10 ¹⁶ Гц — 6·10 ¹⁹ Гц	Атомные процессы при воздействии ускоренных заряженных частиц.
Гамма		менее 5 пм	более 6·10 ¹⁹ Гц	Ядерные и космические процессы, радиоактивный распад.