Арксинус, арккосинус, арктангенс, арккотангенс

Цель: знать определения арксинуса, арккосинуса, арктангенса, арккотангенса и уметь находить их значения;

таблица значений тригонометрических функций:

α	0°(0 рад)	30° (π/6)	45° (π/4)	60° (π/3)	90° (π/2)	180° (π)	270° (3π/2)	360° (2π)
$\sin lpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
$\operatorname{tg}lpha$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Ø	0	Ø	0
$\operatorname{ctg} lpha$	Ø	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	Ø	0	Ø

Арксинусом числа a, такого что $|a| \leq 1$, называется угол (число) α ,

принадлежащий интервалу
$$\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$$

синус которого равен числу $\,a.\,$

$$rcsin a = lpha,$$
 если $\sin lpha = a,$ где $lpha \in \left[-rac{\pi}{2}; rac{\pi}{2}
ight]$

Арккосинусом числа a, такого что $|a| \leq 1,$ называется угол (число) $\alpha,$

принадлежащий интервалу $[0;\pi]$.

косинус которого равен числу $\,a.\,$

rccos a = lpha, если $\cos lpha = a,$ где $lpha \in [0;\pi]$.

Арктангенс числа а есть такое число (угол) а из интервала $(-\frac{\pi}{2}; \frac{\pi}{2})$, тангенс которого равен а

Арккотангенс числа а есть число (угол)

α из интервала (0; π), котангенс которого равен а

$$arcsin(-a) = -arcsin a$$

$$arccos(-a) = \pi - arccos a$$

$$arctg(-a) = -arctg a$$

$$arcctg(-a) = \pi - arcctg a$$

$$sin(arcsin a) = a$$

$$cos(arccos a) = a$$

$$tg(arctg \ a) = a$$
$$tg(arctg \ \sqrt{3}) = \sqrt{3}$$

$$ctg(arcctg \ a) = a$$

$$ctg(arcctg \ \frac{\sqrt{3}}{3}) = \frac{\sqrt{3}}{3}$$

a)
$$arccos(-\frac{1}{2}) = \pi - arccos(\frac{1}{2}) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

6)
$$sin (arccos (-\frac{\sqrt{3}}{2})) = sin(\pi - arccos \frac{\sqrt{3}}{2}) =$$

$$= sin(\pi - \frac{\pi}{6}) = sin\frac{\pi}{6} = \frac{1}{2}$$

$$arctg(-\frac{\sqrt{3}}{3}) = -arctg\frac{\sqrt{3}}{3} = -\frac{\pi}{6}$$

$$arcctg(-1) = \pi - arcctg = 1 = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$

$$tg(\pi + arcsin(-\frac{1}{2})) = tg(\pi - arcsin\frac{1}{2}) = tg(\pi - \frac{\pi}{6}) = tg\frac{\pi}{6}$$

$$2\arcsin\left(-\frac{\sqrt{3}}{2}\right) - 3\arctan\left(-\frac{\sqrt{3}}{3}\right) + \arccos\left(-\frac{\sqrt{3}}{2}\right) - 2\arctan\left(-1\right) = \frac{1}{2}$$