Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технологический университет»,
г. Казань

ПОЛИМЕРИЗАЦИОННАЯ АКТИВНОСТЬ ЛАКТИДА

Работу выполнила: магистрантка 2-го курса Ишмухаметова Адель Фануровна Научный руководитель: к.х.н., доцент каф.ТСК Спиридонова Регина Романовна

Полилактид - биоразлагаемый, алифатический полиэфир

Схема 1 - Полимеризация лактида с раскрытием цикла

Рисунок 1 - Гранулы полилактида

Применение полилактида

Рисунок 2 -Одноразовая посуда

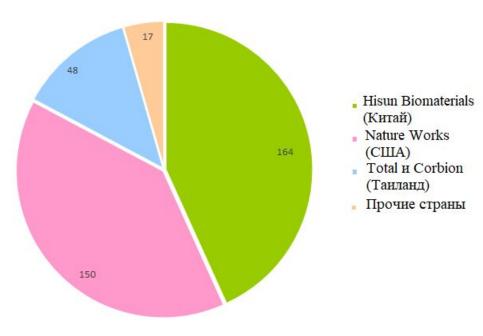


Рисунок 3 - PLAпластика для 3D-печати

Рисунок 4 -Хирургическая расассывающая нить

Производство полилактида в мире

В России же PLA не синтезируется в промышленных масштабах, но на 2019 год появилось уже более 20 производств, перерабатывающих данный полимер, большая часть из которых относится к сфере аддитивных технологий.

Рисунок 5 - Анализ мирового рынка производства полилактида

Цель работы заключается в исследовании влияния природы растворителя и кратности перекристаллизации на чистоту лактида и оценить его полимеризационную активность.

Конкретные задачи:

- 1. Оценить степень чистоты лактида, а также изучить влияние типа растворителя на выход мономера.
- 2. Провести полимеризацию полилактида и оценить свойства получаемого полимера.

Методы исследования полученный веществ

- 1. Кислотное число определяли потенциометрическим методом анализа.
- Изучение температуры плавления проводили на дифференциальносканирующем калориметре марки DSC 1 STA Re System фирмы Mettler Toledo (США). Скорость нагрева 5 град/мин.
- 3. Выход полимера определяли методом гравиметрического анализа.
- 4. Показатель текучести расплава (ПТР) метод стандартизован ГОСТом 11645-73, которому соответствует европейский стандарт ИСО 1133-76, американский АСТМВ 1238-73 и стандарт Германии ВШ 53735. Для определения значения ПТР использовали прибор ИИРТ, на котором реализуется стандартная методика.

Очистка лактида методом многократной перекристаллизацией

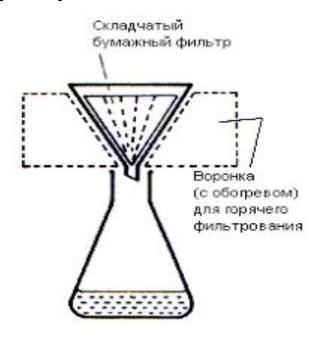


Рисунок 6 – Установка для перекристаллизации

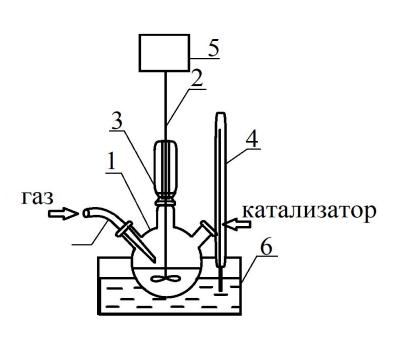
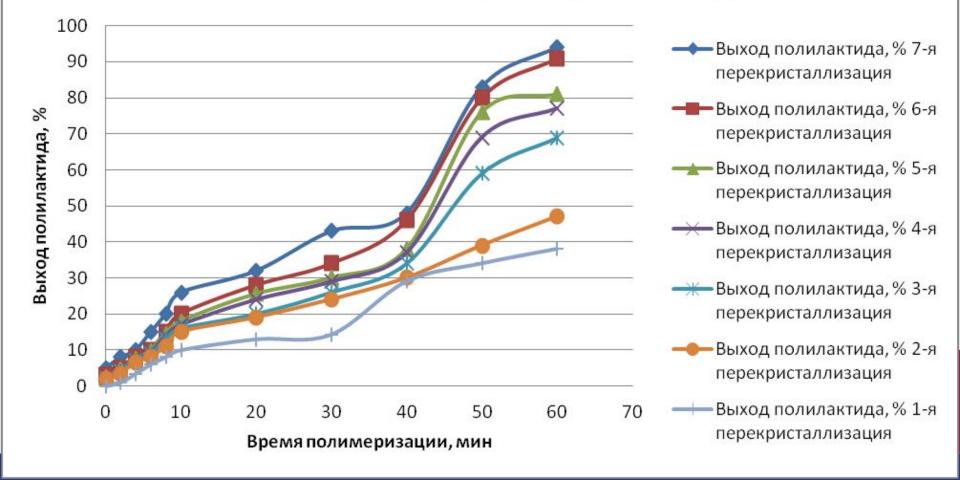
Таблица 1 – Выход лактида после 4-ой перекристаллизации в следующем составе растворителей и температура плавления

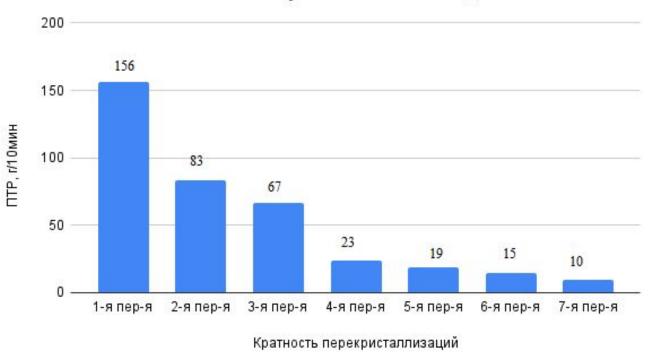
Растворитель/высадитель	Выход лактида, %	$\Delta T^0_{_{\Pi\Pi}}$, °C	К.Ч.
этилацетат	17,64	98,70	6,50
ацетон	35,83	96,30	5,43
этилацетат/толуол	39,16	98,67	4,79
этилацетат/бутанол	46,66	96,91	4,81
этилацетат/изопропанол	56,14	98,22	5,64
этилацетат/хлороформ	34,23	96,60	3,89

Таблица 2 – Характеристики лактида после каждой степени перекристаллизации в изопропаноле и в этилацетате (1:1)

Лактид	Выход лактида, %	$\Delta T^0_{_{\Pi\Pi}}$, °C	К.Ч.
после 1-ой очистки	84,51	85	3,40
после 2-ой очистки	79,07	91	4,24
после 3-ей очистки	65,29	98	4,58
после 4-ой очистки	56,14	98	4,89
после 5-ой очистки	34,99	98	5,64
после 6-ой очистки	31,62	98	6,47
после 7-ой очистки	22,15	98	6,54

Полимеризация лактида


Рисунок 7 – Установка для полимеризации лактида: 1 трехгорлая колба; 2 мешалка; 3 – затвор мешалки; 4 - термометр; 5 моторчик для мешалки; 6 масляная баня.

Кинетика полимеризации лактида

Рисунок 8 — ПТР полилактида синтезированный мономером после каждой степени перекристаллизации

Вывод

- 1. Установлено, что смесь этилацетата и изопропанола, позволяет достичь 56 % выхода мономера и снизить содержание молочной кислоты в лактиде после 3-ей стадии перекристаллизации.
- 2. Для получения высококачественного полилактида с высокой молекулярной массой достаточно проводить 4 стадии перекристаллизации лактида, поскольку с увеличением кратности перекристаллизации выход лактида уменьшается.

Спасибо за внимание!!!

