

- Логика это наука о формах и способах мышления; особая форма мышления.
- **Понятие** это форма мышления, фиксирующая основные, существенные признаки объекта.
- Высказывание форма мышления, в которой что-либо утверждается или отрицается о свойствах реальных предметов и отношениях между ними. Высказывание может быть либо истинно, либо ложно.

Логика

Высказывания:

- Истинные(1) и ложные (0);
- Простые и сложные;
- Общие, частные и единичные.

Высказывания.

• Высказывания бывают общими, частными или единичными. Общее высказывание начинается (или можно начать) со слов: все, всякий, каждый, ни один. Частное высказывание начинается (или можно начать) со слов: некоторые, большинство и т.п. Во всех других случаях высказывание является единичным.

Примеры высказываний:

Пример 1. Определить тип высказывания (общее, частное, единичное).

· «Все рыбы умеют плавать».

Опвет общее высказывание.

· «Некоторые медведи -бурые».

Опвет частное высказывание.

• «Буква A - гласная».

Опвет единичное высказывание.

Примеры высказываний:

- Пример 2. Из двух простых высказываний постройте сложное высказывание, используя логические связки «И», «ИЛИ»:
- — Все ученики изучают математику и литературу.

Алгебра высказываний

- Логическое умножение (конъюнкция)
- Операцию логического умножения (конъюнкция) принято обозначать «&» либо « ∧».
- F=A&B.

Α	В	F=A&B
0	0	0
0	1	0
1	0	0
1	1	1

Логическое сложение

- Дизъюнкция
- Истинно тогда, когда истинно хотя бы одно из входящих в него простых высказываний.
 - F=A√B

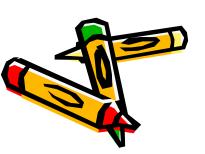
Α	В	F=A _V B		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

Логическое отрицание.

Α	$F=\overline{A}$
0	1
1	0

• Таблица истинности логического отрицания.

- Инверсия
- Делает истинное высказывание ложным и, наоборот, ложное истинным.



 Закон тождества.
 Всякое высказывание тождественно самому себе.

Закон непротиворечия.

- Закон исключения третьего.
- Закон двойного отрицания.
- Закон де Моргана.

$$\blacksquare$$
 $A \lor \overline{A} = 1$

$$\overline{A} = A$$

$$\overline{A \vee B} = \overline{A} \& \overline{B}$$

$$\overline{A \& B} = \overline{A} \vee \overline{B}$$

 Закон коммутативности. В алгебре высказываний можно менять местами логические переменные при операциях логического умножения и логического сложения:

Логическое	Логическое	
умножение	сложение	
A & B = B & A	$A \lor B = A \lor B$	

• Закон ассоциативности. Если в логическом выражении используются только операция логического умножения или только операция логического сложения, то можно пренебрегать скобками или произвольно их расставлять:

Логическое	Логическое	
умножение	сложение	
(A & B) & C = A & (B & C)	$(A \lor B) \lor C = A \lor (B \lor C)$	

 Закон дистрибутивности. В алгебре высказываний можно выносить за скобки как общие множители, так и общие слагаемые:

Дистрибутивность	Дистрибутивность	
умножения	сложения относительно	
относительно сложения	умножения	
<i>ab+ac=a(b+c)</i> – в алгебре		
$(A \& B) \lor (A \& C) = A \& (B \lor C)$	$(A \lor B) \& (A \lor C) = A \lor (B \& C)$	

Логические основы устройства компьютера

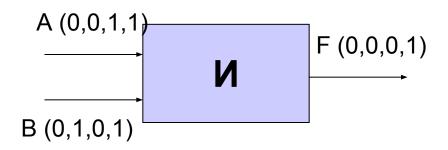
Базовые логические элементы.

- Логический элемент «И» логическое умножение.
- Логический элемент «ИЛИ» логическое сложение.
- Логический элемент «НЕ» инверсия.



Логический элемент «И».

- Логический элемент «И». На входы А и В логического элемента подаются два сигнала (00, 01, 10 или 11).
- На выходе получается сигнал 0 или 1 в соответствии с таблицей истинности операции логического умножения.



Логический элемент «ИЛИ».

- На входы А и В логического элемента подаются два сигнала (00, 01, 10 или 11).
- На входе получается сигнал 0 или 1 в соответствии с таблицей истинности операции логического сложения.

Логический элемент «HE»

- На вход А логического элемента подается сигнал 0 или 1.
- На входе получается сигнал 0 или 1 в соответствии с таблицей истинности инверсии.

Сумматор двоичных чисел.

 Полусумматор. Вспомним, что при сложении двоичных чисел в каждом разряде образуется сумма и при этом возможен перенос в старший разряд.

Слагаемые		Перенос	Сумма
Α	В	Р	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Сумматор двоичных чисел

□ Таблица истинности логической функции $F = (A \lor B) \& (\overline{A \& B})$

Α	В	$A \lor B$	A & B	$\overline{A \& B}$	$(A \lor B) \& (\overline{A \& B})$
0	0	0	0	1	0
0	1	1	0	1	1
1	0	1	0	1	1
1	1	1	1	0	0

Полный однозарядный сумматор.

- Полный однозарядный сумматор должен иметь три входа: A,B- слагаемые и P₀ перенос из младшего разряда и два выхода: сумму S и перенос P.
- Идея построения полного сумматора точно такая же, как и полусумматора. Перенос реализуется путем логического сложения результатов попарного логического умножения входных переменных.
 Формула переноса получает следующий вид:

$$P = (A \& B) \lor (A \& P_0) \lor (B \& P_0)$$

Многозарядный сумматор.

- Многозарядный сумматор процессора состоит из полных однозарядных сумматоров.
- На каждый разряд ставится однозарядный сумматор, причем выход (перенос) сумматора младшего разряда подключается ко входу сумматора старшего разряда.

Триггер.

• Важнейшей структурной единицей оперативной памяти компьютера, а также внутренних регистров процессора является триггер. Это устройство позволяет запоминать, хранить и считать информацию.

