Методы очистки питьевой воды

Выполнил: Сабадашов К.С. ученик 11 «Б» гимназии №25 Руководитель: Безик Ю.Б.

г. Краснодар

Цели и задачи исследования:

- знакомство с теорией по данной проблеме;
- проведение экологического мониторинга состояния питьевой воды в выбранных районах;
- выявление основных загрязнителей воды;
- установление соответствия качества питьевой воды санитарным нормам;
- сопоставление качества исследуемой воды;
- определение химических показателей дополнительно очищенной воды;
- составление таблиц и графиков по данному материалу

Что такое питьевая вода?

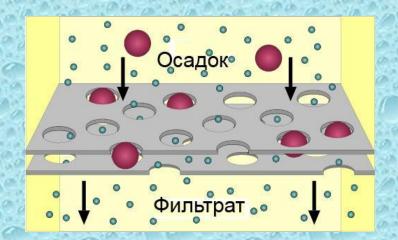
Питьевой считается вода, пригодная к употреблению внутрь и отвечающая критериям качества - то есть вода безопасная и приятная на вкус. В мире эти критерии были утверждены Европейским Сообществом, а затем приняты с некоторой адаптацией каждой из стран. В нашей стране с 1 января 2002 года действует документ с названием "Санитарные правила и нормативы СанПиН 2.1.4.1074-01".

Без воды наше существование невозможно. А без хорошей воды невозможно хорошее существование.

- Вода доставляет в клетки организма питательные вещества и уносит отходы жизнедеятельности, участвует в процессе терморегуляции и дыхания. Для нормальной работы всех систем человеку необходимо как минимум 1,5 литра воды в день.
- Парадоксальный факт: вода необходима для жизни, но она же является и одной из главных причин заболеваемости в мире.
- Опасность употребления некачественной воды может быть микробиологической: вода в природе содержит множество микроорганизмов, некоторые из которых вызывают у человека такие заболевания, как холера, тиф, гепатит или гастроэнтерит.
- Загрязнение воды может быть и химическим. При этом последствия употребления грязной воды могут наступить как немедленно, так и через несколько лет.

Основные методы очистки воды для хозяйственно-питьевого водоснабжения

- Проблема очистки воды охватывает вопросы физических, химических и биологических ее изменений в процессе обработки с целью сделать ее пригодной для питья, т.е. очистки и улучшения ее природных свойств.
- Основными методами очистки воды для хозяйственно-питьевого водоснабжения являются осветление, обесцвечивание и обеззараживание.


Осветление воды путем осаждения взвешенных веществ

Эту функцию выполняют осветлители, отстойники и фильтры. В осветлителях и отстойниках вода движется с замедленной скоростью, происходит выпадение в осадок взвешенных частиц. В целях осаждения мельчайших коллоидных частиц, к воде прибавляют раствор коагулянта (сернокислый алюминий, железный купорос или хлорное железо). В результате образуются хлопья, увлекающие при осаждении взвеси и коллоидные вещества.

Коагуляцией примесей воды называют процесс укрупнения мельчайших коллоидных и взвешенных частиц, происходящий вследствие их взаимного слипания под действием сил молекулярного притяжения.

Фильтрование

- Фильтрование самый распространенный метод отделения твердых частиц от жидкости. При этом из раствора могут быть выделены не только диспергированные частицы, но и коллоиды.
- В процессе фильтрования происходит задержание взвешенных веществ в порах фильтрующей среды и в биологической пленке, окружающей частицы фильтрующего материала. Вода освобождается от взвешенных частиц, хлопьев коагулянта и большей части бактерий.

Обесцвечивание

Обесцвечивание воды, т. е. устранение или обесцвечивание различных окрашенных коллоидов или полностью растворенных веществ может быть достигнуто коагулированием, применением различных окислителей (хлор и его производные, озон, перманганат калия) и сорбентов (активный уголь, искусственные смолы).

Обеззараживание воды (дезинфекция)

- Так как полного освобождения воды от болезнетворных бактерий ни отстаивание, ни фильтрование не дают, с целью дезинфекции применяют следующие способы:
- введение в воду сильных окислителей (хлор, йод, марганцево-кислый калий, перекись водорода, гипохлорит натрия и кальция, жидкий хлор и хлорную известь), способных убивать ферменты бактериальных клеток;
- нагревание воды до температуры 80 °С (пастеризация) 100 °С (стерилизация);
- облучением воды ультрафиолетовыми лучами;
- озонированием;
- воздействием ультразвуком;
- введением в воду серебра или других металлов, обладающих олигодинамическим действием на микроорганизмы.

Практическое применение нашли 1, 3 и 4-й методы.

Для устранения запаха хлора к обрабатываемой воде прибавляют одновременно с хлором в небольших количествах аммиак (аммонизация воды). Хлор, введенный в воду, образует хлорноватистую кислоту и соляную кислоту по уравнению $Cl_2 + H_2O = = HOCl + HCl$. Хлорноватистая кислота HOCl — соединение нестойкое, диссоциирующее с образованием гипохлоритного иона OCl. При этом окислительное действие на органические вещества, в том числе и бактерии, проявляют как хлорноватистая кислота, так и гипохлоритный ион. Соляная кислота соединяется с карбонатами, находящимися в воде.

Дезодорация воды

- Для удаления из воды веществ, вызывающих нежелательные привкусы и запахи, применяют следующие методы ее обработки:
- аэрацию (основана на летучести большинства веществ, обуславливающих привкусы и запахи);
- окисление хлором, озоном, перманганатом калия и другими окислителями (для удаления из воды запахов, обусловленных жизнедеятельностью микроорганизмов и водорослей);
- о сорбцию активным углем.

Ступени водоочистки

Учитывая состав водопроводной воды, которая зачастую содержит хлориды, фториды, сульфиды, сульфаты, металлы, хлор и хлорорганические соединения, а также промышленные загрязнения в виде хрома, никеля, ртути, свинца, мышьяка, меди, радионуклидов, большинство производителей предлагают фильтры многоступенчатой водоочистки. В процессе прохождения через такой фильтр на каждой ступени очистки вода теряет те или иные примеси.

1-ая ступень - это механическая очистка воды, в процессе которой удаляются такие инородные частицы, как песок, ил, ржавчина. Осуществляется она с помощью полипропиленовой сетки, в зависимости от размеров отверстий в которой удерживаются только примеси (микрофильтрация) или примеси и бактерии (ультрафильтрация).

2-ая ступень - удаление хлора, пестицидов, запахов. Происходит адсорбция, то есть поглощение частиц в порах какого-либо материала. Самым распространенным адсорбентом является природный фильтрант уголь, также используются синтетические волокна.

- Уголь очищает, поглощая остаточный хлор, органические соединения и споры бактерий, и улучшает - вкус, запах, цвет питьевой воды . Многие производители применяют активированный уголь из скорлупы кокоса, адсорбционная способность которого в 4 раза выше.
- Чтобы предотвратить размножение бактерий внутри фильтра активированный уголь покрывают слоем серебра. В некоторых фильтрах используется полимерное углеродное волокно аквален - смесь угля и синтетических материалов.

3-я ступень - умягчение воды и ее освобождение от тяжелых металлов - ионный обмен. Помимо всего вышесказанного, мягкая вода в несколько раз улучшает вкус чая, кофе и других напитков, а также более пригодна для умывания и применения в быту.

Методы очистки воды

Существует несколько методов очистки воды, но все они входят в три группы методов:

- механические методы;
 - физико-химические методы;
 - биологические методы.

Наиболее дешевая - механическая очистка - применяется для выделения взвесей. Основные методы: процеживание, отстаивание и фильтрование. Применяются, как предварительные этапы.

<u>Химическая очистка</u> применяется для выделения из сточных вод растворимых неорганических примесей. При обработке сточных вод реагентами происходит их нейтрализация, выделение растворенных соединений, обесцвечивание и обеззараживание стоков.

<u>Физико-химическая очистка</u> применяется для очистки сточных вод от грубо- и мелкодисперсионных частиц, коллоидных примесей, растворенных соединений. Высокопроизводительный и в то же время дорогой способ очистки.

Биологические методы применяются для очистки от растворенных органических соединений. Метод основан на способности микроорганизмов разлагать растворенные органические соединения.

В настоящее время из общего количества сточных вод механической очистки подвергается 68% всех стоков, физико-химической- 3%, биологической - 29%. В перспективе предполагается повысить долю очистки биологическим методом до 80%, что улучшит качество очищаемой воды.

Основным методом повышения качества очистки вредных выбросов предприятиям при рыночной экономике является система штрафов, а также система плат за пользование очистными сооружениями.

ИССЛЕДОВАНИЕ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ В Г. КРАСНОДАРЕ

- Объектом исследования выбрана вода микрорайон Комсомольский, Юбилейный, Черёмушки.
- Задачи исследования:
 - знакомство с теорией по данной проблеме;
 - проведение экологического мониторинга состояния питьевой воды в выбранных районах;
- выявление основных загрязнителей воды;
- установление соответствия качества питьевой воды санитарным нормам;
 - сопоставление качества исследуемой воды;
- определение химических показателей дополнительно очищенной воды;
- составление таблиц и графиков по данному материалу

Органолептические показатели воды.

Содержание взвешенных частиц.

- Этот показатель качества воды определяется фильтрованием воды через бумажный фильтр и последующим высушиванием осадка на фильтре в сушильном шкафу до постоянной массы.
- Для анализа берется 500 мл. воды. Фильтр перед работой взвешивается. После фильтрования осадок с фильтром высушивается до постоянной массы при 105°С, охлаждается в эксикаторе и взвешивается. Весы должны обладать высокой чувствительностью, лучше использовать аналитические весы.
- Содержание взвешенных веществ в мг/л в испытуемой воде определяется по формуле:

$$(m_1 - m_2) \cdot 1000/V$$
,

- где m₁ масса бумажного фильтра с осадком взвешенных частиц,
 г;
- m₂ масса бумажного фильтра до опыта, г;
- V объем воды для анализа, л.
- **П**ДК = 10мг/г.

Цвет (окраска)

- При загрязнении водоема стоками промышленных предприятий вода может иметь окраску, не свойственную цветности природных вод. Для источников хозяйственно-питьевого водоснабжения окраска не должна обнаруживаться в столбике высотой 20 см, для водоемов культурно-бытового назначения – 10 см.
- Диагностика цвета один из показателей состояния водоема. Для определения цветности воды используется стеклянный сосуд и лист белой бумаги. В сосуд набирается вода и на белом фоне бумаги определяется ее цвет (голубой, зеленый, серый, желтый, коричневый) показатель определенного вида загрязнения.

Прозрачность

- Прозрачность воды зависит от нескольких факторов: количества взвешенных частиц ила, глины, песка, микроорганизмов, содержания химических соединений.
- Для определения прозрачности воды используется прозрачный мерный цилиндр с плоским дном, в который наливается вода, подкладывается под цилиндр на расстоянии 4 см от его дна шрифт, высота букв которого 2 мм, а толщина линий букв 0,5 мм, и сливается вода до тех пор, пока сверху через слой воды не будет виден этот шрифт. Измеряется высота столба оставшейся воды линейкой и выражается степень прозрачности в сантиметрах. При прозрачности воды менее 3 см водопотребление ограничивается. Уменьшение прозрачности природных вод свидетельствует об их загрязнении.

Запах

Запах воды обусловлен наличием в ней пахнущих веществ, которые попадают естественным путем и со сточными водами. Запах воды водоемов, обнаруживаемый непосредственно в воде или (водоемов хозяйственно-питьевого назначения) после ее хлорирования, не должен превышать 2 баллов. Определение основано на органолептическом исследовании характера и интенсивности запахов воды при 20° и 60°C.

Характер и род запаха воды естественного происхождения

	Характер запаха	Примерный род запаха			
	Ароматический	Огуречный, цветочный			
	Болотный	Илистый, тинистый			
	Гнилостный	Фекальный, сточной воды			
	Древесный	Мокрой щепы, древесной коры			
	Землистый	Прелый, свежевспаханной земли, глинистый			
9	Плесневый	Затхлый, застойный			
No.	Рыбный	Рыбы, рыбьего жира			
	Сероводородный	Тухлых яиц			
ST.	Травянистый	Скошенной травы			
9	Неопределенный	Не подходящий под предыдущие определения			

Интенсивность запаха воды

Балл	Интенсивность запаха	Качественная характеристика
0	_	Отсутствие ощутимого запаха
1	Очень слабая	Запах, не поддающийся обнаружению потребителем, но обнаруживаемый в лаборатории опытным исследователем
2	Слабая	Запах, не привлекающей внимания потребителя, но обнаруживаемый, если на него обратить внимание
3	Заметная	Запах, легко обнаруживаемый и дающий повод относиться к воде с неодобрением
4	Отчетливая	Запах, обращающий на себя внимание и делающий воду непригодной для питья
5	Очень сильная	Запах настолько сильный, что вода становится непригодной для питья

Показатель	ь Единица ГОСТ ВОЗ		Директива Совета					
качества воды	измерения			EC 98/83/EC				
	Обобщенные показатели							
Водор. показ. / рН /	отн.ед.	6,0 - 9,0	6,5 - 8,5	6,5 – 9,5				
конц. ионов	отп. о д.	0,0 9,0	0,5 0,5	0,5 7,5				
водорода								
Общая жесткость	мг экв/л	7,0	7,0	10,0				
	Химические /не более/							
Катионы железа	мг/л	0,3	0,3	0,2				
Катионы свинца	мг/л	0,03	0,03	0,01				
Хлорид ионы	мг/л	10,0	7,0	7,0				
Сульфат ионы	мг/л	10,0	5,0	5,0				
	Органолептические показатели /не более/							
Запах	баллы	2,0	_	_				
Мутность по станд. шкале	мг/л	1,5	2,8	2,3				
Цветность	град.	20,0	15,0	20,0				
Привкус	баллы	2,0	_	_				

Определение качества воды методами химического анализа. Водородный показатель (рн).

- Питьевая вода должна иметь нейтральную реакцию (рН около 7).
 Значение рН воды водоемов хозяйственного, питьевого, культурнобытового назначения регламентируется в пределах 6,5 – 8,5.
- Оценивать значение рН можно разными способами.
- Приближенное значение рН определяют следующим образом. В пробирку наливают 5 мл исследуемой воды, о,1 мл универсального индикатора, перемешивают и по окраске раствора определяют рН:
- розово-оранжевая рН около 5;
- 🕒 светло-желтая б;
- зеленовато-голубая 8.
- 2. Можно определить pH с помощью универсальной индикаторной бумаги, сравнивая ее окраску со шкалой.

Жесткость воды

Различают общую, временную и постоянную жесткость воды. Общая жесткость обусловлена главным образом присутствием растворимых соединения кальция и магния в воде. Временная жесткость иначе называется устранимой или карбонатной. Она обусловлена наличием гидрокарбонатов кальция и магния. Постоянная (некарбонатная) жесткость вызвана присутствием других растворимых солей кальция и магния.

Общая жесткость варьирует в широких пределах в зависимости от типа пород и почв, слагающих бассейн водосбора, а также от сезона года. Значение общей жесткости в источниках централизованного водоснабжения допускается до 7 ммоль • экв./л, в отдельных случаях по согласованию с органами санитарно – эпидемиологической службы – до 10 ммоль • экв./л.

При жесткости до 4 ммоль • экв./л вода считается мягкой, 4 – 8 ммоль • экв./л – средней жесткости, 8 – 12 ммоль • экв./л – жесткой, более 12 ммоль • экв./л – очень жесткой.

Методами химического анализа обычно определяют жесткость общую (\mathcal{H}_{o}) и карбонатную (\mathcal{H}_{k}), а некарбонатную (\mathcal{H}_{k}) рассчитывают как разность \mathcal{H}_{o}^{k} – \mathcal{H}_{k}

Обнаружение катионов свинца.

- <u>Реагент</u>: хромат калия (10 г K_{2} CrO₄ растворить в 90 мл H_{2} O).
- Условия проведения реакции
- 1. pH = 7,0.
- 2. Температура комнатная.
- 3. Осадок нерастворим в воде, уксусной кислоте и аммиаке.

Выполнение анализа

- В пробирку помещают 10 мл пробы воды, прибавляют 1 мл раствора реагента. Если выпадает желтый осадок, то содержание катионов свинца более 100 мг/л:
 - Pb²+ + CrO²- = PbCrO4 жёлтый

Обнаружение катионов

железа.

- Реагенты: тиоцианат аммония (20 г NH CNS растворить в дистиллированной воде и довести до 100 мл); азотная кислота (конц.); перекись водорода (ω (%) = 5 %).
- Условия проведения реакции
- 1. pH 3,0
- 2. Температура комнатная.
- 3. Действием пероксида водорода ионы Fe (II) окисляют до Fe (III).
 - Выполнение анализа
- К 10 мл пробы воды добавляют 1 каплю азотной кислоты, затем 2 3 капли пероксида водорода и вводят 0,5 мл тиацианата аммония.
- При концентрации ионов железа более 2,0 мг/л появляется розовое окрашивание, при концентрации более 10 мг/л окрашивание становится красным:

 Fe³⁺ + 3CNS⁻ = Fe(CNS)

$$Fe^{3+} + 3CNS^- = Fe(CNS)_3$$
 красный

Обнаружение хлорид – ионов.

- Реагенты: нитрат серебра (5 г AgNO₃ растворить в 95 мл воды); азотная кислота (1:4).
- Условия проведения реакции
- 1. pH 7,0
- 🥊 💎 2. Температура комнатная.
- Выполнение анализа
- К 10 мл пробы воды прибавляют 3 4 капли азотной кислоты и приливают 0,5 мл раствора нитрата серебра.
- Белый осадок выпадает при концентрации хлорид ионов более 100 мг/л:
 - Cl⁻ + Ag⁺ = AgCl белый

Обнаружение сульфат -

ионов.

Реагент: хлорид бария (10 г BaCl x 2H O растворить в 90 г H O); соляная кислота (16 мл HCl (p = 1 ,19) растворить в воде и довести объем до 100мл).

Условия проведения реакции

- 1. pH 7,0.
- 2. Температура комнатная.
- 3. Осадок нерастворим в азотной и соляной кислотах.
- Выполнение анализа.
- К 10 мл пробы воды прибавляют 2 3 капли соляной кислоты и приливают 0,5 мл раствора хлорида бария.
- При концентрации сульфат ионов более 10 мг/л выпадает садок:

$$Ba^{2+} + SO_4^{2-} = BaSO_4$$
 белый

Проведено исследование питьевой воды в следующих точках города:

- М.-Н. Юбилейный

- М.-Н Комсомольский

- М.-Н. Черёмушки

Результаты мониторинга

питьевой воды в г. Краснодаре

Исследуемая вода	Показатель качества воды				
	Водор. показ. /pH/	Катионы железа	Катионы свинца	Хлорид ионы	Сульфат ионы
Единица измерения	Отн. ед.	мг/л	мг/л	мг/л	мг/л
м-н Комсомольский	6,5	5,0	_	5,0	5,0
м-н Юбилейный	7,0	2,0	_	6,0	5,0
м-н Черёмушки	7,0	2,0	_	5,0	3,0

Сравнительный анализ качества водопроводной воды с Государственным стандартом

Показатель качества	ГОСТ	Исследуемая вода			
воды		м-н Комсомольский	м-н Юбилейный	м-н Черёмушки	
Водор. показ. / рН / конц. ионов водорода.	6,0 - 9,0	6,5	7,0	7,0	
Катионы железа	0,3	5,5	2,0	2,0	
Катионы свинца	0,03	_	_	_	
Хлорид ионы	10,0	5,0	6,0	5,0	
Сульфат ионы	10,0	5,0	5,0	3,0	

Изменение показателей качества питьевой воды микрорайона Черёмушки в результате дополнительной обработки

Исследуем вода	ая	Показатель качества воды					
		Водор.	Катионы	Катионы	Хлорид	Сульфат	
6 6		показ.	железа	свинца	ионы	ионы	
		/pH/					
Единица измерения		Отн. ед.	мг/л	мг/л	мг/л	мг/л	
	Первоначальная вода						
м-н Черёмушки		7,0	2,0	_	6,0	5,0	
	Вода дополнительно очищенная						
Очищенная фильтром		6,5	2,0	_	6,0	5,0	
Вода кипяченая		6,5	2,0	_	6,0	5,0	
Талая вода		6,5	_	_	1,0	1,0	

 В результате исследований я выяснил, что в воде, прошедшей дополнительную обработку фильтром и кипячением, снижается кислотность. Наиболее очищенной явилась талая вода, уменьшилось содержание хлорид и сульфат ионов, катионы железа в талой воде не обнаруживаются.

Выводы

- Из проведенного исследования качества питьевой воды
 г. Краснодара можно сделать следующие выводы:
- 1. Качество питьевой воды по органолептическим и большинству химических показателей соответствует нормам Всемирной Организации Здравоохранения (ВОЗ), Европейского сообщества (ЕС) и Государственного стандарта (ГОСТ).
- 2. Питьевая вода нашей местности является водой средней жесткости, однако водопроводная вода мягче природной.
 - 3. При движении по многокилометровым магистралям из чугунных и стальных труб, подверженных коррозии, в водопроводной воде повышается содержание ионов железа.

4. Рекомендуется производить дополнительную обработку питьевой воды

непосредственно на месте потребления:

а) отстаивание водопроводной воды; при этом улетучивается остаточный

свободный хлор, который применяют для обеззараживания воды.

- б) кипячение воды; основное предназначение процесса кипячения обеззараживание воды и снижение карбонатной жесткости.
- в) вымораживание воды; считается, что такая вода самая чистая, лучше
 - проникает через биологические мембраны, быстрее выводится из организма экскреторными органами.
- г) фильтрование; фильтры уменьшают ее жесткость и содержание свободного хлора.
- 5. Подземные воды являются основным источником питьевой воды в нашей местности, они гораздо ценнее по качеству и наиболее надежны в

санитарном отношении.

ЛИТЕРАТУРА:

- 💿 1. Алексеев С.В., Груздева Н.В., Муравьев А.Г., Гущина Э.В. Практикум
- , по экологии: учебное пособие. Москва, Издательство АО МДС, 1998г.
- 2. Ашихмина Т.Я Школьный экологический мониторинг. Издательство
- «Агар», 2000 г.
- 🧅 3. Браун Т., Лемей Г. Химия в центре наук. Пер. с англ. Москва «Мир»,
- 1983 г.
- 🥏 4. Мигунов Л.Н., Мигунова М.И. Природа и общество. г. Старый Оскол,
- 2000 Г.
- 5. Муравьев А.Г. Руководство по определению показателей качества
- 💌 воды полевыми методами. СПб.: Крисмас +, 1999 г.
- 6. Небел Б. Наука об окружающей среде. Пер. с англ. М., «Мир»,
- 1993 г.
- 🧶 7. Новиков Ю.В. и др. Методы исследования качества воды водоемов. –
- М.: Медицина, 1990 г.
- 🥑 8. Паус К.Ф. Основы промышленной экологии г. Белгород, 2001 г.

Интернет ресурсы:

- http://www.physicon.
- http://www.hemi.wallst.ru
- http://picanal.narod.ru/
- http://www.hemi.wallst.ru/ http://www.alhimik.ru/
- http://www.chem.msu.su/
- http://www.cnit.msu.ru/