Предельные углеводороды

(Презентация по химий для учащихся 9 класса)

Составила: учитель ТимофееваВ.П. (МОУ Чулковская СОШ)

пос.Чулково 2010год

Определение

- Предельные углеводороды это органические вещества, состоящие только из углерода и водорода, соответствующие общей формуле Cⁿ H_{2n+2}.
- У этих веществ только простые одинарные связи между атомами углерода, которые соединяются с максимально возможным количеством числом атомов водорода. Их поэтому называют предельными или насыщенными.

Изомеры

- Изомеры это вещества, имеющие одинаковый качественный и количественный состав, но отличающиеся по своему строению и свойствам
- Изомерия- это явление существования веществ с одинаковым качественным и количественным составом, но отличающимся по своему строению и свойствам

Примеры изомеров

 Для вещества с общей молекулярной формулой С₄Н₁₀ существуют 2 изомера:

Гомологический ряд предельных углеводородов таблица

Nº ⊔/⊔	Формула вещества	Название вещества	формула радикала	Название радикала
1	CH ₄	метан	-CH ₃	метил
2	C ₂ H ₆	Этан	-C ₂ H ₅	этил
3	C ₃ H ₈	пропан	-C ₃ H ₇	пропил
4	C ₄ H ₁₀	бутан	- C ₄ H ₉	бутил
5	C ₅ H ₁₂	пентан	-C ₅ H ₁₁	пентил

Таблица (продолжение)

6	C ₆ H ₁₄	гексан	-C ₆ H ₁₃	гексил
7	C ₇ H ₁₆	гептан	-C ₇ H ₁₅	гептил
8	C ₈ H ₁₈	октан	-C ₈ H ₁₇	октил
9	C ₉ H ₂₀	нонан	-C ₉ H ₁₉	нонил
10	C ₁₀ H ₂₂	декан	-C ₁₀ H ₂₁	децил
	И т.д.			

Гомологи

- Гомологи вещества, расположенные в порядке возрастания относительных молекулярных масс, сходных по строению и свойствам, но отличающихся друг от друга по составу на одну или несколько групп -СН₂-
- Гомологический ряд- ряд веществ, расположенных в порядке возрастания относительных молекулярных масс, сходных по строению и свойствам, но отличающихся друг от друга по составу на одну или несколько групп -CH₂-

Физические свойства предельных углеводородов

- Агрегатное состояние: первые четыре члена гомологического ряда(C_1 - C_4) газы, C_5 - C_{15} жидкости, C_{16} и более тяжелые твердые вещества
- Температура кипения и плавления постепенно увеличиваются с ростом молекулярной массы вещества
- Растворимость в воде плохая

Нахождение в природе и получение предельных углеводородов

Предельные углеводороды встречаются:

- √ в природном газе (98%- метан);
- $\sqrt{}$ в попутном нефтяном газе (C₁-C₆);;
- √ в нефти (C_5 - C_{50});
- √ в каменном угле

Получают их из природного сырья.

Химические свойства предельных углеводородов

- Для предельных углеводородов характерны следующие химические реакции:
- √ замещения (по свободно-радикальному механизму);
- √ окисления (полное и неполное);
- √ разложения (крекинг, дегидрирование);
- √ изомеризации.
- Для предельных углеводородов совсем не характерны реакции присоединения.

Реакции замещения

1. Реакция хлорирования на свету

$$CH_4 \rightarrow CH_3 CI \rightarrow CH_2 CI_2 \rightarrow CH CI_3 \rightarrow CC CI_4$$

1.
$$CH_4 + CI_2 \rightarrow CH_3 CI$$
 (первая стадия) хлорметан

2.
$$CH_3 CI + CI_2 \rightarrow CH_2 CI_2$$
 (вторая стадия) дихлорметан

3.
$$CH_2CI_2+CI_2 \rightarrow CHCI_3$$
 тр ихлорметан (третья стадия)

4. CHCI
$$_3$$
 +CI $_2$ \rightarrow CCI $_4$ (четвертая стадия) тетрахлорметан

2. Реакция нитрования (реакция Коновалрва)

Реакции окисления

1. Полное окисление – горение

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + Q$$

2. Неполное окисление

Реакции разложения

1. крекинг (реакции идут при нагревании с разрывом углеродной цепи)

$$CH_{4}^{1500} \rightarrow CC+2H_{2}$$
 $C_{4}H_{10} \rightarrow C_{2}H_{4}+C_{2}H_{6}$

2. отщепление молекулы водорода

(дегидрирование)

$$C_2H_6 \rightarrow C_2H_4 + H_2$$

Реакции изомеризации

В реакциях изомеризации не меняется количественный и качественный состав веществ, меняется лишь их пространственное строение

кат.
$$CH_3$$
- CH_2 - CH_2 - CH_3 , \to CH_3 - CH - CH_3 ! CH_3 H - бутан изобутан

Применение предельных углеводородов

- Предельные углеводороды находят свое применение как:
- √ топливо (бензин, керосин, мазут и др.);
- √ растворители ;
- √ химическое сырье (для получения алкенов ацетилена, бутадиена и др.);
- √ сырье для синтеза (водорода, сажи, парафина, сероуглерода и др.)