№ 16. Аминокислоты

Зеркало Венеры (1898), Sir Edward Burne-Jones / Museu Calouste Gulbenkian Lisbon / The Bridgeman Art Library)

Все объекты этой картине имеют зеркальные отражения. Подобно многим биомолекулам, аминокислоты существуют в виде зеркальных изомеров (стереоизомеров). Обычно, только L-изомеры аминокислот участвуют в биологических процессах.

«Повсюду, где мы встречаем жизнь, мы находим, что она связана с каким-либо белковым телом, и повсюду, где мы встречаем какое-либо белковое тело, не находящееся в процессе разложения, мы без исключения встречаем и явление жизни».

(К. Маркс,Ф.Энгельс. Собрание сочинений. Т.20).

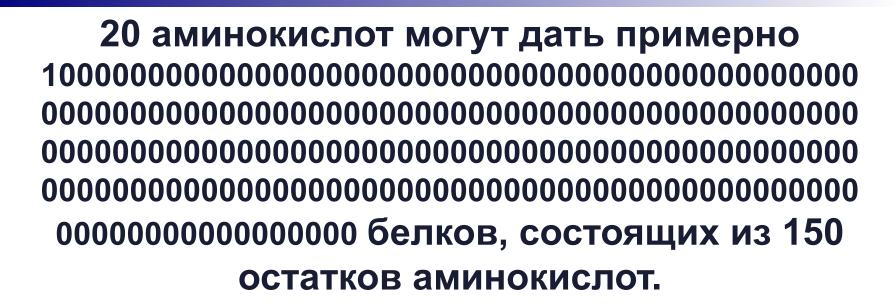
Жизнь – это способ существования белковых тел.

Ф.Энгельс

Пребиотический (абиогенный) синтез аминокислот

- * CH4, NH3, H2, H2O, HCN, H2S, CH2O;
- * УФ-излучение, электрический разряд, радиация и нагретый пепел вулканов;
- аминокислоты могут образовываться и в космосе, что было подтверждено анализом мерчисонского метеорита, упавшего в 1969 году в Австралии. В метеорите были обнаружены 23 рацемические аминокислоты.

Murchison (Мерчисонский метеорит — углистый метеорит общим весом 108 тысяч граммов)


"Натура тем паче всего удивительна, что в простоте своей многохитростна и от малого числа причин производит неисчислимые образы свойств,

н и явлений »

M.B.

Ломоносов

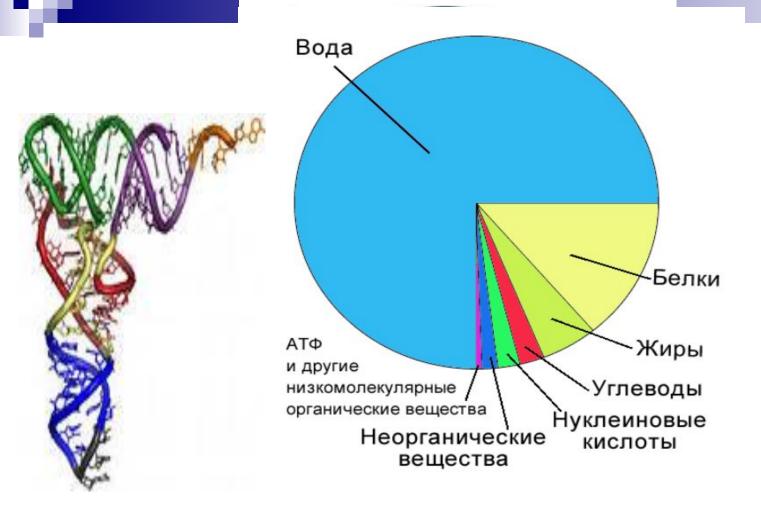
1711-1765

десять дуотригинтиллионов. Это астрономическое число — число гугол

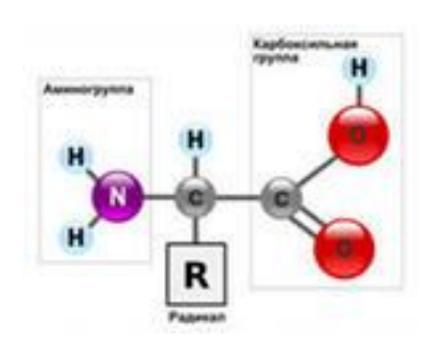

умноженное на число гугол $({}^{\text{от англ. googol}})$ (Wilton Sirotta)

(«New Names in Mathematics», 1940, Э.Кэснер)

"Barnie Google with googly eyes"


100 10

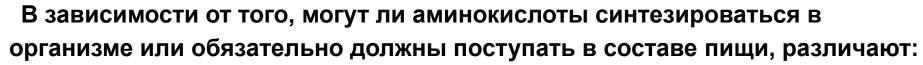
10 <u>000 ... 000</u> 33 раза


Первая по популярности поисковая система (79,65 %)

Белков в клетках больше, чем каких бы то ни было других органических соединений: на их долю приходится свыше 50% общей сухой массы клеток.

Аминокислоты – соединения, в молекулах которых одновременно присутствуют амино- и карбоксильные группы.

$$R$$
 R
 CH
 $COOH$
 NH_2


1. В соответствии с расстоянием между амино- и карбоксильной группами:

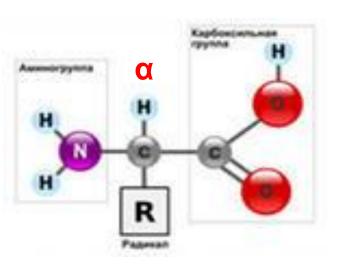
2. В зависимости от соотношения числа амино- и карбоксильных групп:

Глицин, моноаминомонокарбоновая кислота

Аспарагиновая кислота, моноаминодикарбоновая кислота

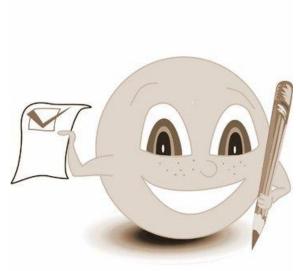
Лизин, диаминомонокарбоновая кислота

- а) заменимые (несущественные) аминокислоты
- б) Незаменимые (эссенциальные, существенные):

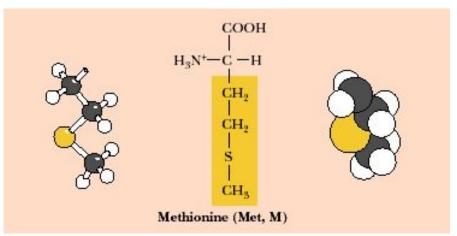


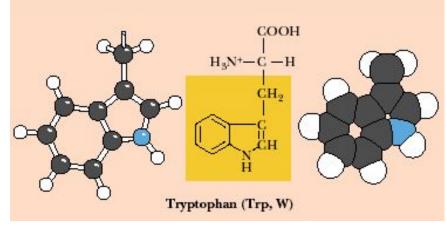
Триптофан Фенилаланин Лизин Треонин Метионин Лейцин Изолейцин Валин

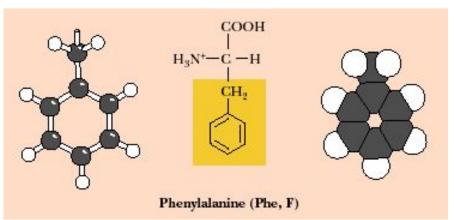
В детском возрасте незаменимы также аргинин и гистидин


Человек 25 лет и массой 80 кг нуждается в 64г белка в сутки

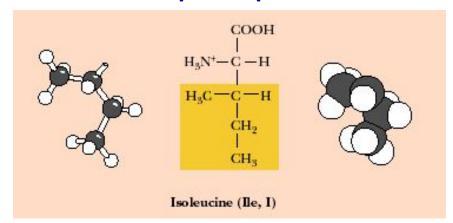
α-аминокислоты



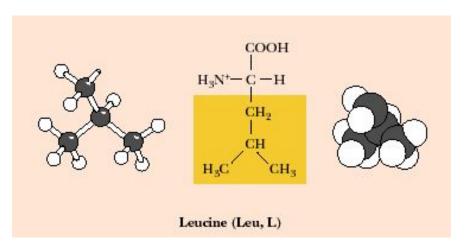

В соответствии с природой остатка R (боковой цепью) α-аминокислоты подразделяют на группы:

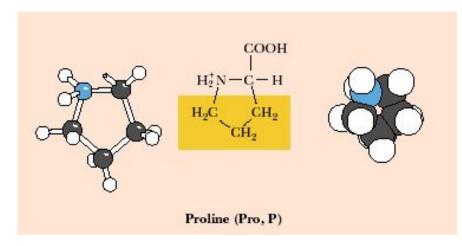


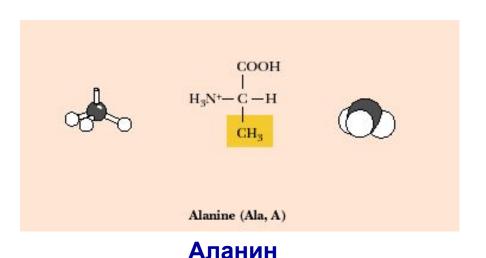
А) Нейтральные гидрофобные аминокислоты



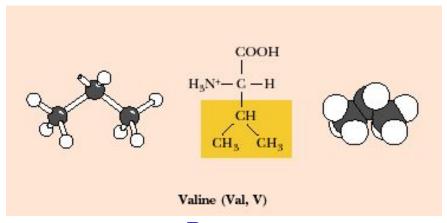
Метионин


Фенилаланин

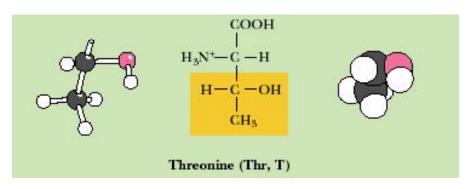

Триптофан


Изолейцин

Нейтральные гидрофобные аминокислоты



Лейцин



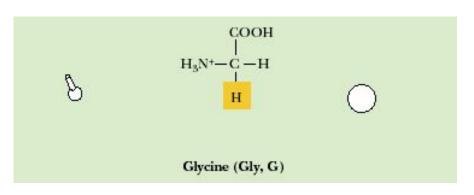
Пролин

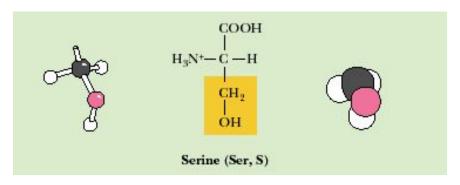
Валин

Б) Нейтральные гидрофильные аминокислоты

COOH

H₃N⁺-C-H

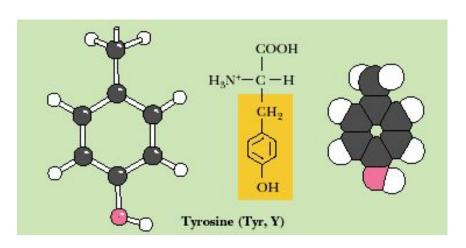

CH₂

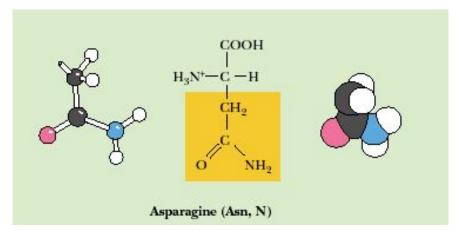

SH

Cysteine (Cys, C)

Треонин

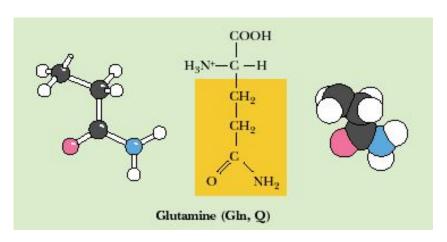
Цистеин

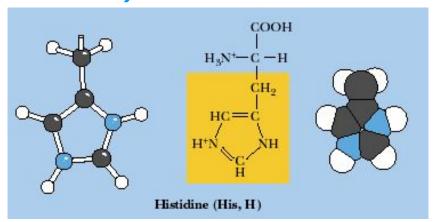


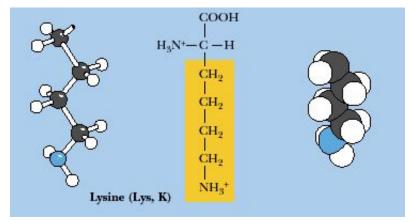


Глицин

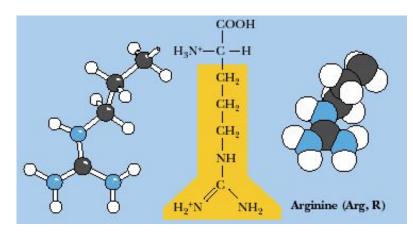
Серин

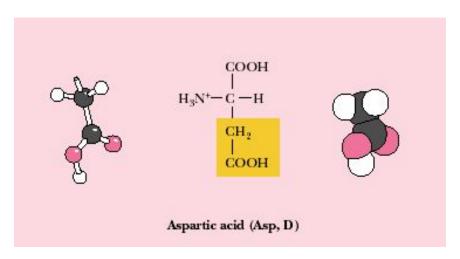

Нейтральные гидрофильные аминокислоты



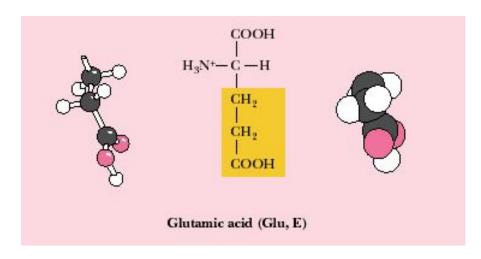

Тирозин

Аспарагин


В) Основные аминокислоты


Гистидин

Лизин

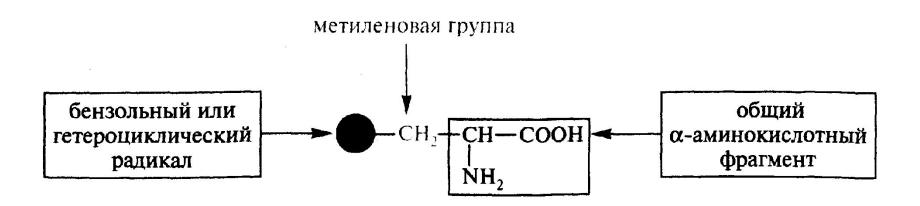


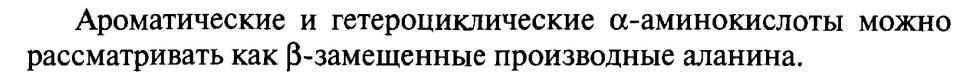
Аргинин

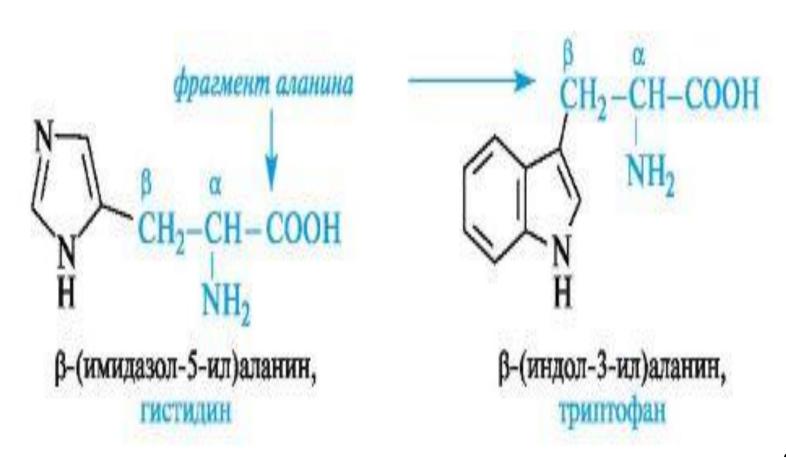
Г) Кислые аминокислоты

Аспарагиновая кислота

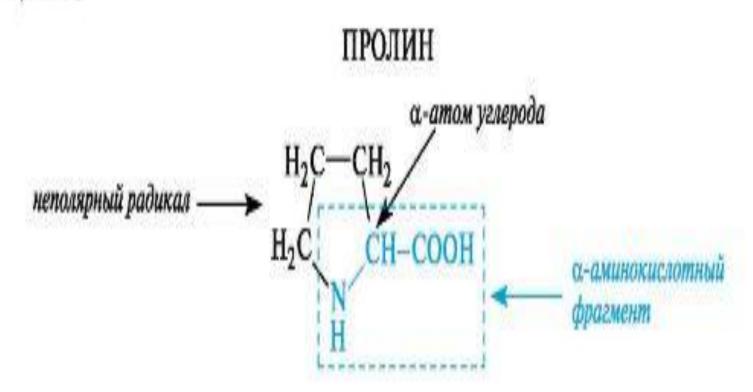
Глутаминовая кислота


- нейтральные α-аминокислоты одна NH₂ и одна СООН группы;
 - основные α-аминокислоты две NH₂ и одна СООН группы;
 - кислые α-аминокислоты одна NH₂ и две СООН группы.


В алифатическом радикале могут содержаться «дополнительные» функциональные группы:

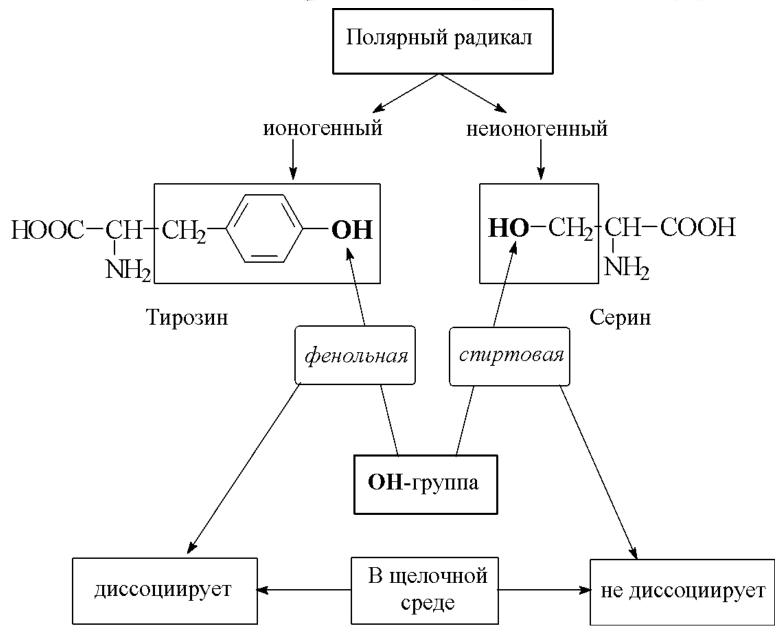

- гидроксильная серин, треонин;
- карбоксильная аспарагиновая и глутаминовая кислоты;
- тиольная цистеин;
- амидная аспарагин, глутамин.

Ароматические и гетероциклические α-аминокислоты.



Ароматические и гетероциклические α-аминокислоты.

цикла.



В зависимости от характера бокового радикала выделяют две труппы:

- α-аминокислоты с неполярными (гидрофобными) радикалами;
- α-аминокислоты с полярными (гидрофильными) радикалами.

К первой группе относятся α-аминокислоты с алифатическими боковыми радикалами — аланин, валин, лейцин, изолейцин, метионин — и ароматическими боковыми радикалами — фенилаланин, триптофан.

α-аминокислоты с полярными (гидрофильными) радикалами

Полярные α-аминокислоты с ионогенными группами

Анионы

Катионы

Аспарагиновая ООС-СН2кислота

Лизин
$$H_3 N - (CH_2)_4 -$$

кислота

Аргинин
$$H_2 N = C - NH - (CH_2)_3 - NH_2$$

Тирозин

Цистеин

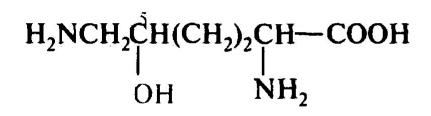
(электростатические) взаимодействия

кислота

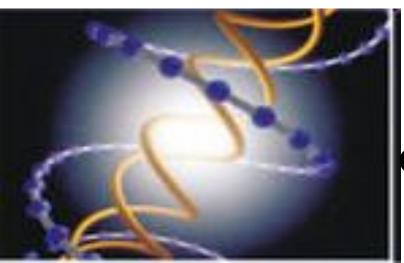
Аргинин
$$-(CH_2)_3-NH-C \stackrel{NH_2}{\sim} NH_2$$

Цистеин
$$-CH_2-S^-$$

Полярные неионогенные радикалы

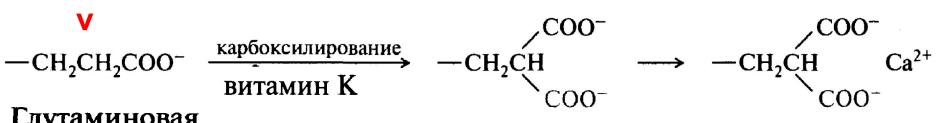

серин
$$H_0$$
— CH_2 — аспарагин H_2N — C — CH_2 — треонин CH_3 — CH — глутамин H_2N — C — $(CH_2)_2$ —

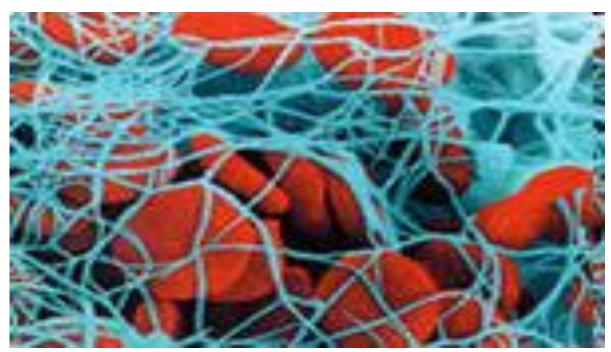
в образовании водородных связей с другими полярными группами.


Т Модифицированные α-аминокислоты

Гидроксилирование.

5-гидроксилизин

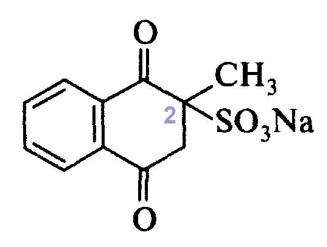

коллаген Строительный белок клеток.


Окисление тиольных групп

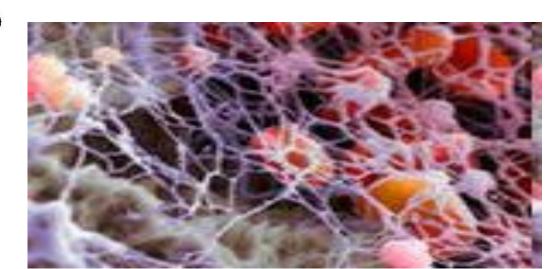
для лечения острой лучевой болезни

Карбоксилирование.

Глутаминовая кислота Протромбина


значение для свертывания крови.

Витамины группы К


антигеморрагический фактор

витамин K_2 (менахиноны n = 4-9)

1,4-нафтохинона

викасол

Природные источники аминокислот

Название	Открыватель, исходный материал	Материал с наибольшим содержанием	(pI)
	а) Нейтральные гидрофобнь	е аминокислоты	
Аланин	Вейль, фиброин шелка (1888)	фиброин шелка (29,7%)	6.02
Валин	Горуп-Безане, экстракт желез (1856)	эластин (17,4%), сухожилия и аорта быка (17,6%)	5.97
Лейцин	Пруст, творог (1819)	сывороточный альбумин быка (12,8%), кукуруза (19%)	5.98
Изолейцин	Эрлих, патока (1904)	сывороточный альбумин быка (2,6%), белок овса (4,3%)	6.1
Фенилаланин	Шульце и Барбьери, ростки люпина (1879)	сывороточный альбумин (7,8%), γ-глубулин (4,6%), вальбумин (7,7%)	5.88
Метионин	Мюллер, казеин (1921)	γ-казеин (4,1%), овальбумин (5,2%), β-лактоглобулин (3,2%)	5.8
Триптофан	Гопкинс и Кол, казеин (1901)	лизоцим (яйца) (10,6%), α-лактальбумин (7%))	5.88
Пролин	Фишер, казеин (1901)	сальмин (6,9%), казеин (10,6%), желатин (16,3%)	6.10

Природные источники аминокислот

Название	Открыватель, исходный материал	Материал с наибольшим содержанием	(pI)			
б) Нейтральные гидрофильные аминокислоты						
Глицин	Браконно, шелк (1820)	фиброин шелка (29,7%)	5.97			
Серин	Крамер, шелковый клей (1865)	фиброин шелка (16,2%), трипсиноген (16,7%), пепсин (12,2%)	5.70			
Треонин	Розе и др., фибрин (1935)	кератин волос (8,5%), яичный белок (10,5%)	6.50			
Тирозин	Либих, сыр (1846)	фиброин шелка (12,8%), папаин (14,7%)	5.65			
Аспарагин	Вокелин и Робике, спаржа (1806)		5.41			
Глутамин	Шульце, сахарная свекла (1877)					
Цистеин	Бауман, цистин (1884)	кератин волос (14,4%), кератин перьев (8,2%), кератин шерсти (11,9%)	5.02			

Природные источники аминокислот

Название	Открыватель, исходный материал	Материал с наибольшим содержанием	(pI)
	в) Кислые аминокислоты ((ионогенные)	
Аспарагиновая кислота	Риттхаузен, бобовые (1868)	эдестин (12,0%), глобулин ячменя (10,3%)	3,20
Глутаминовая кислота	Риттхаузен, бобовые (1866)	глиадин пшеницы (39,2%), глиадин ржи (37,7%), кукуруза (22,9%)	3.22
	г) Основные аминокислоты	(ионогенные)	
Лизин	Дрехсель, казеин (1899)	миоглобин лошади (15,5%), сывороточный альбумин быка (12,8%)	9.74
Аргинин	Шульце и др., проростки люпина (1886)	сальмин (86,4%), желатин (8,3%)	10.76
Гистидин	Коссель, стурин (1896)	гемоглобин (7,0%)	7.58

M

Номенклатура

Тривиальные названия α-аминокислот

```
Серин входит в состав фиброина шелка (от лат. serieus - шелковистый);

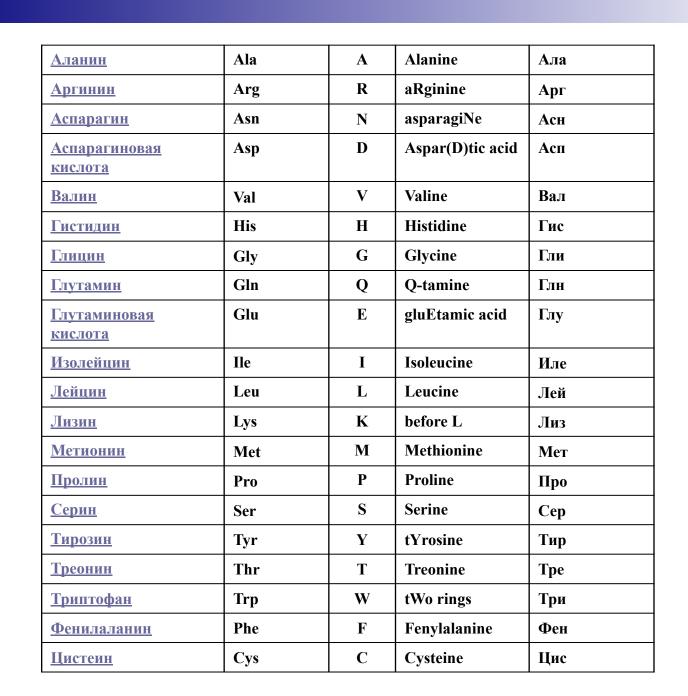
Тирозин впервые выделен из сыра (от греч. tyros - сыр);

глутамин - из злаковой клейковины (от нем. Gluten - клей);

аспарагиновая кислота - из ростков спаржи (от лат. asparagus - спаржа).
```

м

Номенклатура


Тривиальная номенклатура в основном используется для широко распространённых -- α - аминокислот.

Рациональная IUPAC

Ser, S

$$\beta$$
 α CH_2 — CH — $COOH$ OH NH_2 серин


α-амино- Вгидроксипропионовая кислота2-амино-3-гидроксипропановая кислота

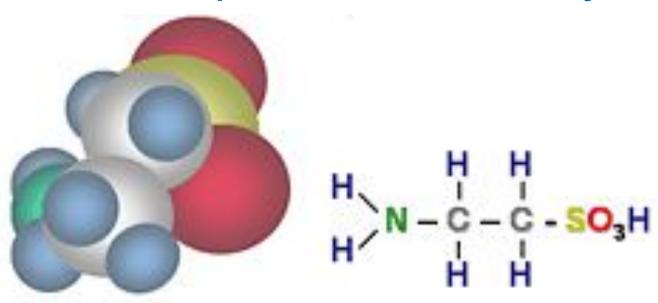
.

Номенклатура аминокислот

Номенклатура аминокислот

Нестандартные аминокислоты

β-Аланин, 3-аминопропановая кислота, β-Ala H₃N⁺CH₂CH₂COO⁻


Карнозин (бета-аланил-L-гистидин), βAlaHis

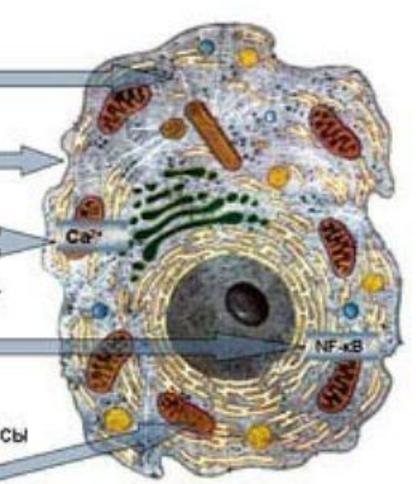
антиоксидант, природный стимулятор мышечной активности. Природный протектор возбудимых тканей

Таурин, 2-аминоэтансульфоновая кислота, природная серосодержащая аминокислота, выделенная из бычьей желчи в 1827 г.

<u>нейромедиаторная</u> аминокислота в мозге, тормозящая синаптическую передачу

Физиологические эффекты таурина

В составе таурохолевых кислот участвует в обмене жиров, холестерина и жирорастворимых витаминов

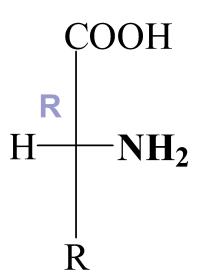

Таурин влияет на внутриклеточное осмотическое давление и участвует в регуляции клеточного объёма

Таурин влияет на фосфолипидный состав клеточной мембраны

Таурин является регулятором внутриклеточного кальция

Таурин, соединяясь с хлором, проявляет свойства антиоксиданта и ингибирует воспалительные ответы цитокинов через нуклеарный фактор NF

Таурин влияет на окислительные процессы в митохондриях (конъюгация с тРНК)


Зеркало Венеры (1898), Sir Edward Burne-Jones / Museu Calouste Gulbenkian Lisbon /

α-аминокислота

$$\mathbf{K}$$
 $\mathbf{H}_{2}\mathbf{N}$
 \mathbf{H}
 \mathbf{R}

L-α-аминокислота

D-α-аминокислота

CH₃-CH₂-
$$\overset{\bigstar}{C}$$
H- $\overset{\bigstar}{C}$ H-COOH
CH₃ NH₂

Изолейцин, Ile

$$\star^{\beta} \star^{\alpha}$$
 СН3-СН-СН-СООН ОН NH_2 Треонин, Thr

4-гидроксипролин, НуРго

D-аминокислоты

D-аспарагиновая кислота и D-метионин предположительно являются нейромедиаторами у млекопитающих.

D-метионин и **D-аланин** входят в состав опиоидных гептапептидов кожи южноамериканских амфибий – филломедуз: **дерморфина** Туr-*D-Ala*-Phe-Gly-Tyr-Pro-Ser и **дермэнкефалина**Туr-*D-Met*-Phe-His-Leu-Met-Asp(NH₂)

Наличие D-аминокислот определяет высокую биологическую активность этих пептидов как анальгетиков.

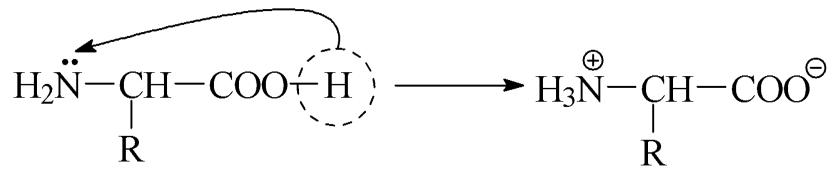
Gramicidin S

споровая палочка Bacillus brevis

бактерицидным (уничтожающим бактерии) действием.

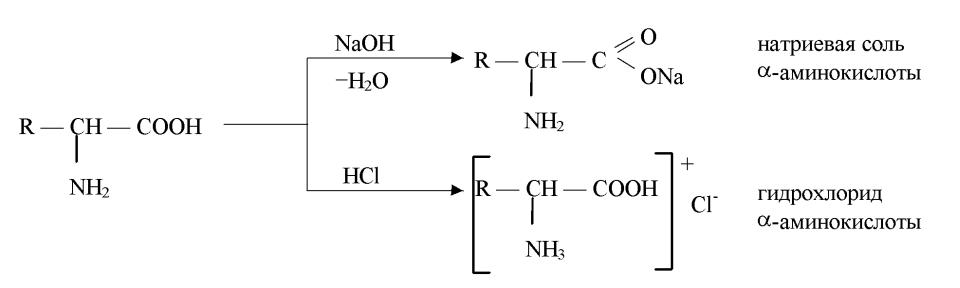
метиловый эфир L-Аспартил-L-Фенилаланина подсластитель

Большое количество токсикологических и клинических исследований аспартама подтверждают его безвредность, если дневная доза не превышает 50 мг на килограмм массы. В Европе установлен максимум: 40 мг на килограмм массы в день. Практически 40 мг/кг массы тела для человека массой 70 кг значат примерно 266 таблеток синтетического подслащивающего средства или 26,6 л колы в один день.

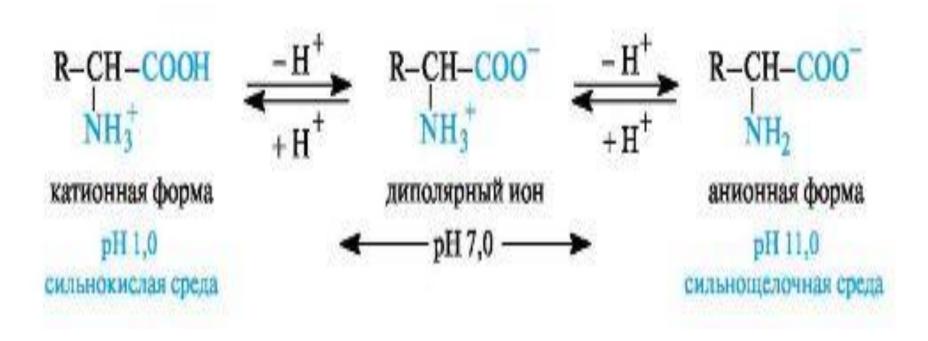


м

Физические и химические свойства



Несуществующая в природе форма


Биполярный ион (цвиттер-ион), внутренняя соль

Как в водных растворах, так и в твёрдом состоянии аминокислоты существуют только в виде внутренних солей (биполярных ионов, цвиттер-ионов; от немецкого zwitter – двоякий)

Аминокислоты являются амфотерными соединениями:

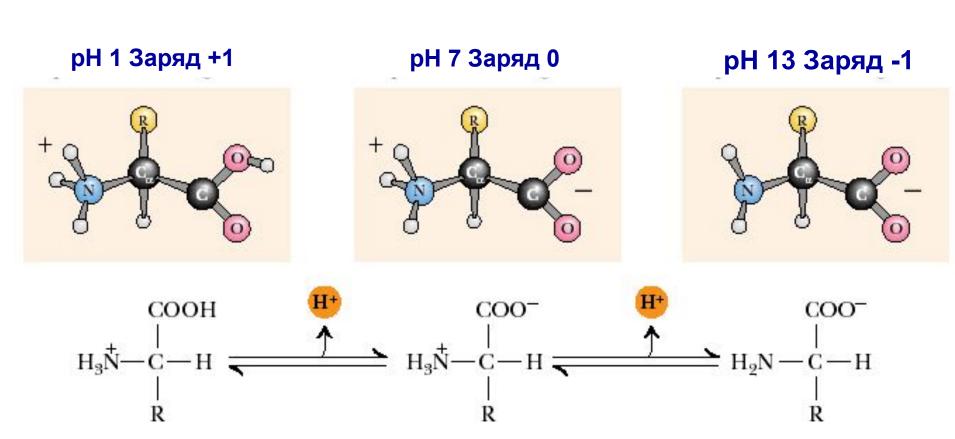
Кислотно-основное равновесие для аминокислоты:

Кислотно-основное равновесие для аминокислоты:

$$H_3N^{\bigoplus}$$
 H_3N^{\bigoplus} H_2N CHR H^{\bigoplus} CHR H^{\bigoplus} CHR H^{\bigoplus} COO^{\bigoplus} CO

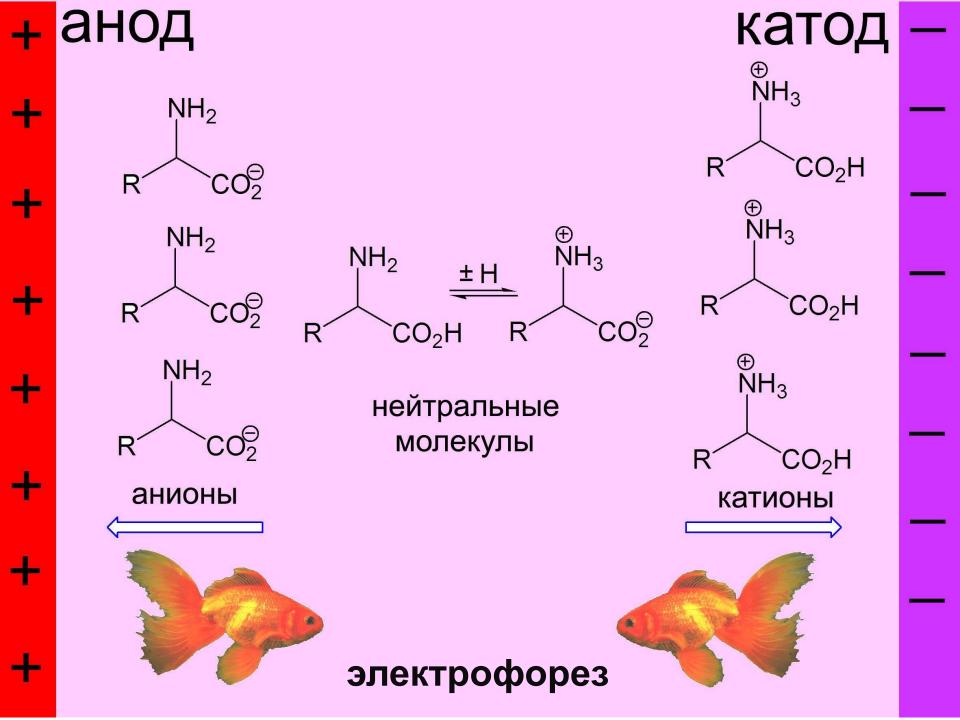
(pH 1-2)

(нейтральный)


(pH 13-14)

Катионная форма

Анионная форма


Физические и химические свойства

Кислотно-основные свойства

Катионная форма

Цвиттер-ион (нейтральный) Анионная форма

Изоэлектрическая точка

Значение рН, при котором концентрация диполярных ионов максимальна, а минимальные концентрации катионных и анионных форм α-аминокислоты равны, называется изоэлектрической точкой (р1).

Изоэлектрическая точка

$$pI = \frac{pK_{a_n} + pK_{a_{n+1}}}{2},$$

где n — максимальное число положительных зарядов в полностью протонированной α -аминокислоте.

Значения рІ аминокислот асп 2,77 **6,0** 5,74 5,65 13,76 арг мет ГЛН ала 5,96 5,07 3,22 9,74 ГЛУ цис ли3 вал 5,98 | фен | 5,48 лей 5,41 асн 7,59 ГИС

Для <mark>моно</mark>амино<mark>моно</mark>карбоновых кислот pl ≈ 5-6

pl моноаминодикарбоновых кислот (Asp, Glu) ≈ 3

pl диаминомонокарбоновых кислот (His, Lys, Arg) ≈ 8-11

Если рН меньше pl, AK имеет заряд + и движется к катоду
Если рН больше pl, AK имеет заряд — и движется к аноду

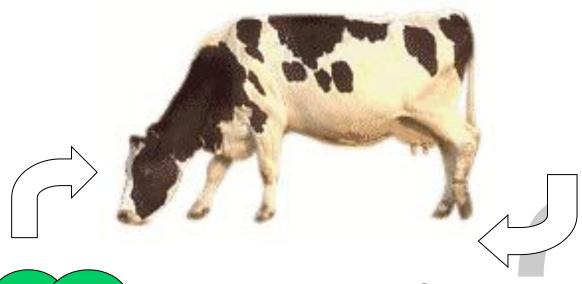
Кислотно-основные свойства

CH ₃ -CH-C NH ₂ OH		
Аминокислота	pKa ₁	pKa ₂
CH ₃ CH ₂ COOH	4,38	нет
H ₃ N ⁺ CH(CH ₃)COO ⁻	2,34	9,69
CH ₃ CH ₂ NH ₂	нет	10,67

Получение аминокислот

1. Выделение из белков и пептидов Белки гидролизуют - 6 М HCI, при нагревании

(110 оС) ,12-72 ч.


Используют также щелочной гидролиз и ферментативный гидролиз.

2. Микробиологический синтез

используя патоку, аммиак и микрообранизмы Corynebacterium glutamicum получают глутаминовую кислоту, которая используется как пищевая добавка.

Выход глутаминовой кислоты составляет 50 кг на 100 кг введённой глюкозы (время ферментации – 40 часов).

3. Биологический способ получения аминокислот

Корм с добавкой рацемической смеси α-аминокислот Отходы с оптически активным изомером фанинокислоты

Очистка

10

Химические синтезы аминокислот.

1. Аммонолиз α -галогенкарбоновых кислот

$$\begin{array}{c} \alpha \\ \text{CH}_{3}\text{-CH-COOH} \\ \text{CI} \end{array} \longrightarrow \begin{array}{c} \text{NH}_{3} \\ \text{-HCI} \end{array} \longrightarrow \begin{array}{c} \text{CH}_{3}\text{-CH-COOH} \\ \text{NH}_{2} \end{array}$$

2. Синтез Штреккера

$$CH_3$$
— C — CH_3 — CH — CN — OH — OH

٠.

Реакции с участием только аминогруппы

1. Алкилирование

H₂N-CHR-COO⁻ Me⁺ + R'Cl
$$\longrightarrow$$
 R'-HN-CHR-COOH + MeCl (CH3I)

R'-H₂N⁺-CHR-COO⁻

саркозин - N-метилглицин

биполярный ион

CH₃N⁺H₂CH₂COO⁻

промежуточное соединение в метаболизме аминокислот

$$(CH_3)_3N^+-CH_2-COO^-$$

биполярный ион

N,N,N-триметилглицин

донор метильных групп

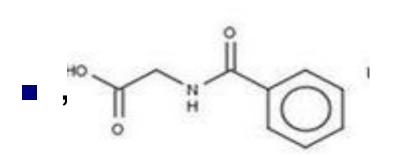
Простейший **бетаин** - производное глицина - был впервые обнаружен в соке столовой свеклы *Beta* vulgaris

2. Ацилирование

$$O$$
 \parallel
 $H_2N-CHR-COO^- + R'-C-Cl + B: \longrightarrow$
хлорангидрид
 O
 \parallel
 O
 \parallel
 $R'-C-NH-CHR-COO^-BH^+ + BH^+Cl^-$

Ацилирование в условиях Шоттена-Баумана

$$H_2N-CHR-COO^- + R'-C_{1/2}O + B: \longrightarrow$$


O

ангидрид

 $R'-C-NH-CHR-COO^-BH^+ + BH^+R'-COO^-$

Ацилирование в условиях Шоттена-Баумана

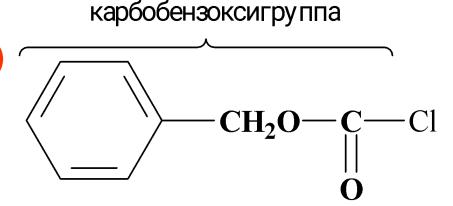
Гиппуровая кислота

бензоилглицин,

C6H5CONHCH2COOH

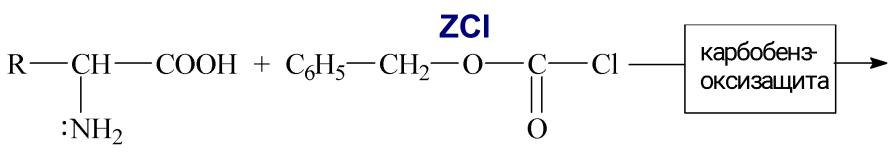
В клинической практике

показатель функционального состояния печени.

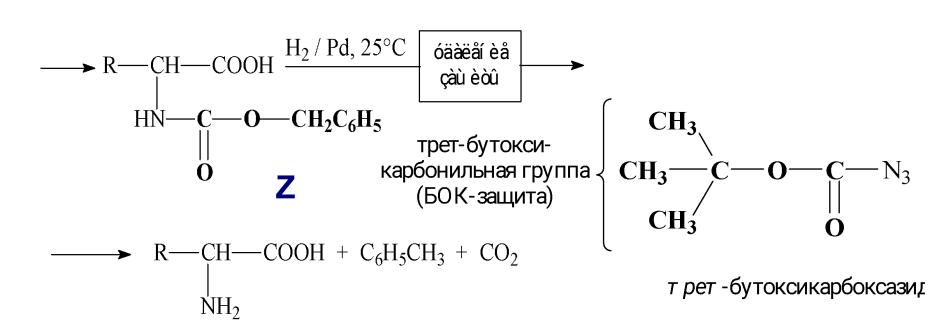

способность печени обезвреживать ядовитые вещества.

Образование N-ацильных производных

("защита аминогруппы").


$$R$$
— CH — $COOH + Cl$ — C — R' — R — R — CH — $COOH$
 NH_2
 NH_2

Карбобензоксизащита (1932 г) карбобензоксихлорид (бензиловый эфир хлормуравьиной кислоты).


ZCI

Физические и химические свойства

 α -аминокислота

карбобензоксихлорид

3. Образование оснований Шиффа

$$H_2N-CHR-COO^*Na^+ + \bigcirc C^O$$

защита аминогруппы

$$CH=N-CHR-COOH$$
 $CH=N-CHR-COOH$
 $CH=N-CHR-COOH$
 $CH=N-CHR-COOH$
 $CH=N-CHR-COOH$
 $CH=N-CHR-COOH$
 $CH=N-CHR-COOH$
 $CH=N-CHR-COOH$
 $CH=N-CHR-COOH$
 $CH=N-CHR-COOH$

Реакция с формальдегидом

$$R$$
— CH — $COOH$ + $C=O$ — R — CH — $COOH$ NH₂ формальдегид CH_2 — OH

метилольные производные являются гораздо более сильными кислотами, чем аминокислоты, и они легко оттитровываются щёлочью.

количественное определение α-аминокислот методом формольного титрования щелочью (метод Серенсена).

«Нингидриновая реакция»

$$O$$
 С ОН O Негори O ОН O ОН

4. Дезаминирование аминокислот

OH
$$_{1}$$
 $_{1}$ $_{2}$ $_{3}$ $_{1}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{6}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{6}$ $_{6}$ $_{7}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{6}$ $_{6}$ $_{7}$ $_{1}$ $_{1}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{2}$ $_{4}$ $_{4}$ $_{4}$ $_{5}$ $_{4}$ $_{5}$ $_{6}$ $_{7}$ $_{7}$ $_{7}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4$

волюмометрическое определение содержания азота и количества аминогрупп в аминокислотах

Метод Ван-Слайка

$$R-NH_2 + HNO_2 \longrightarrow R-OH + N_2 + H_2O$$

$$CH_3$$
 CH_2 NH_2 HNO_2 CH_3 CH_2 $N^{+} = N$ CH_3 CH_2 CH_3 CH_2 CH_3 CH_4 CH_5 CH_5

$$\longrightarrow$$
 CH₃-CH₂-O⁺ H

БИОЛОГИЧЕСКИ ВАЖНЫЕ РЕАКЦИИ α -АМИНОКИСЛОТ.

А. Внутримолекулярное дезаминирование

$$R-CH2-CH-COO- \longrightarrow R-CH=CH-COOH + NH3$$

$$NH3+$$

(таким образом у некоторых микроорганизмов и высших растений

аспарагиновая кислота превращается в фумаровую)

w

Б. Восстановительное дезаминирование

$$NH_3^+$$
-CHR—COO⁻ + $2H^+$ \longrightarrow R—CH₂—COOH + NH_3^+ (у некоторых микроорганизмов)

В. Гидролитическое дезаминирование

$$NH_3^+-CHR-COO^- + H_2O \longrightarrow R-CH-COOH$$
OH

(тип дезаминирования, характерный для микроорганизмов)

M

Г. Дегидратазное дезаминирование

$$CH_2-CH-COO^- \xrightarrow{\text{фермент}} CH_2=C-COO^- \longrightarrow OH NH_3^+ NH_3^+$$

(этот тип дезаминирования характерен для аминокислот серин, треонин, цистеин)

Д. Окислительное дезаминирование

HOOCCH₂CH₂CHCOOH
$$\frac{\text{HAД}^+}{\text{HAДH} + \text{H}^+}$$
 HOOCCH₂CH₂CCOOH NH₂ NH

L-глутаминовая кислота

 α -иминоглутаровая кислота

 α -оксоглутаровая кислота

Трансаминирование – реакция переноса α-аминогруппы с аминокислоты на α-кетокислоту:

Донорная α-аминокислота

Акцепторная α-оксокислота

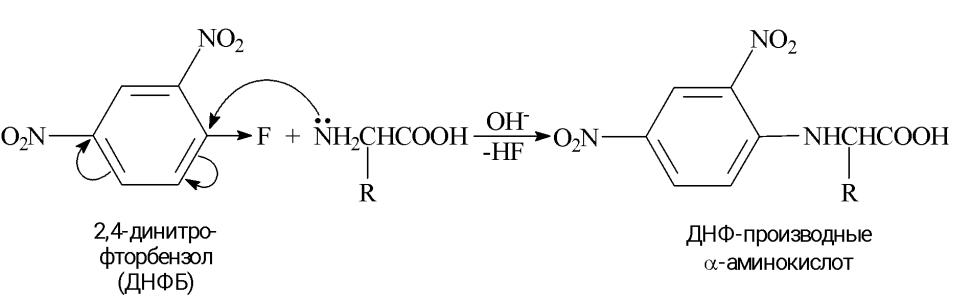
трансаминаза + пиридоксальфосфат

L-аспаргиновая кислота

 α -оксоглутаровая кислота

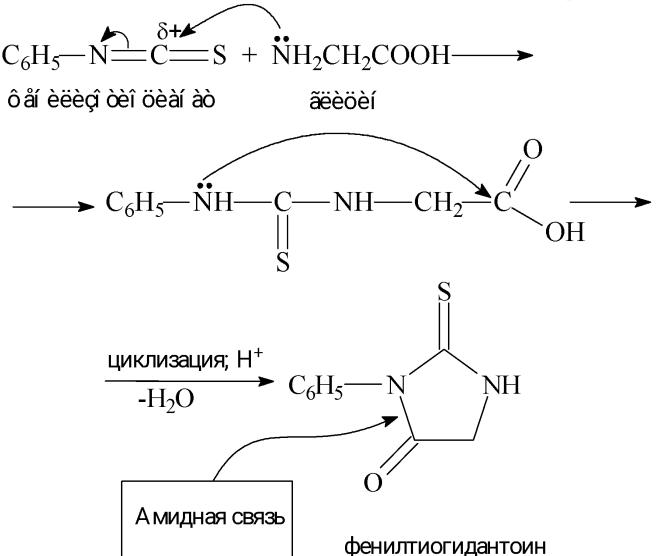
$$\begin{array}{c} \longrightarrow \\ \text{HOOC--CH}_2\text{--COOH} + \\ \text{HOOC--CH}_2\text{--CH--COOH} \\ \text{O} \\ \end{array}$$

Щавелевоу ксу сная кислота


А кцепторная α -оксокислота

L-глутаминовая кислота

Донорная α-аминокислота


Физические и химические свойства

Образование ДНФ-производных

Физические и химические свойства

Образование ФТГ-производных (реакция Эдмана)

Реакции, протекающие с участием только карбоксильной группы.

1.Образование эфиров

метиловый эфир α-аминокислоты

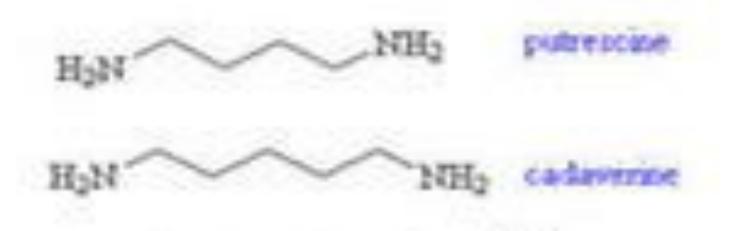
глицин — кристаллическое вещество с T_{пл}=292°C метиловый эфир глицина — жидкость с T_{кип}=130°C.

$$\bigcirc 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \bigcirc 0$$

карбоксилат-ионы, полностью лишены ацилирующей способности

2. Образование галогенангидридов

$$R$$
— CH — $COOH$ $\xrightarrow{SOCl_2}$ или $POCl_3$ \longrightarrow R — CH — C
 Cl_3 — C — NH
 CH_3 — C — NH
 CH_3 — C — C


Реакция используется для активации карбоксильной группы при пептидном синтезе

3. Восстановление карбоксильной группы до первичной спиртовой

4. Декарбоксилирование аминокислот термолизом солей щелочноземельных металлов

Процесс декарбоксилирования α-аминокислот в организме ведет к образованию биогенных аминов

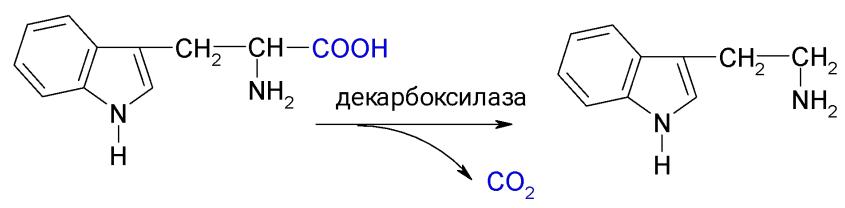
$$ext{-OOC--CH--NH}_3^+ \xrightarrow{\text{-HI}_2 \text{-MI}_3 \text{-MI}_2 \text{-MI}_3 \text{$$

Путресцин- 1,4-диаминобутан, образующийся в толстой кишке при ферментативном декарбоксилировании орнитина; при цистинурии обнаруживается в моче.

Кадаверин-(лат. cadaver труп) - продукт ферментативного декарбоксилирования лизина (1,5-диаминопентан), образующийся при бактериальном разложении белков (напр., в просвете толстой кишки).

Ферментативное гидроксилирование

$$\sim$$
 — CH2 — CH — COOH — \sim — HO — CH2 — CH — COOH NH2 фенилаланин тирозин


При генетически обусловленном отсутствии в организме фермента, катализирующего этот процесс, развивается тяжелое заболевание — фенилкетонурия.

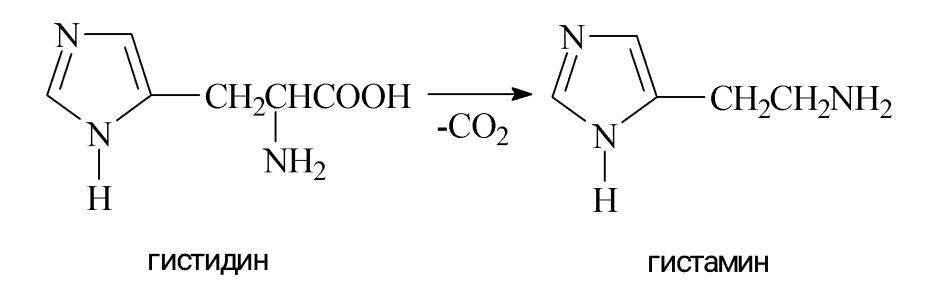
Биогенные амины в организме

Серотонин оказался высокоактивным биогенным амином сосудосуживающего действия. Он регулирует артериальное давление температуру тела, дыхание, почечную фильтрацию и является медиатором нервных процессов в ЦНС

Декарбоксилирование

т рипт офан

индол


Обладает фекальным запахом (при большом разведении приобретает запах жасмина)

т рипт амин

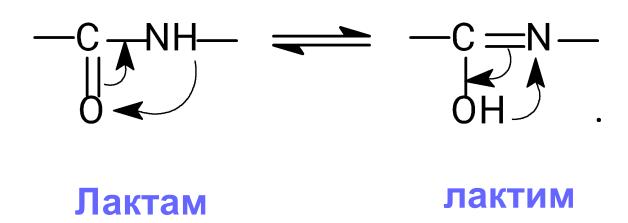
Скатол (3-метилиндол)

10

Декарбоксилирование в организме

Обладает сосудорасширяющим свойством, Медиатор аллергических реакций

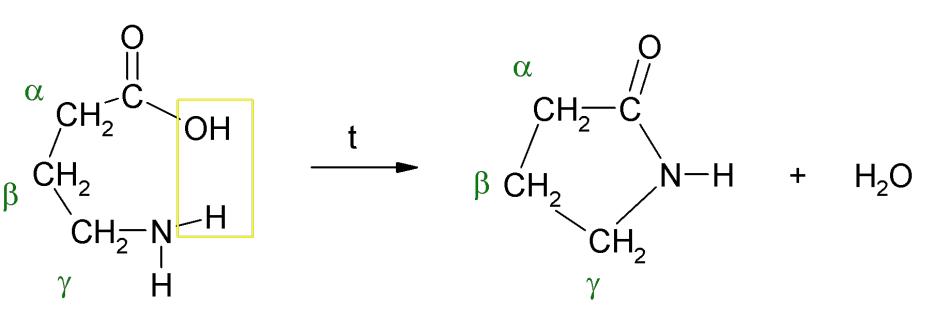
Реакции, протекающие с участием обеих функциональных групп.


1.Отношение аминокислот к нагреванию α-аминокислоты

аланин

2,5-диоксо-3,6-диметилпиперазин

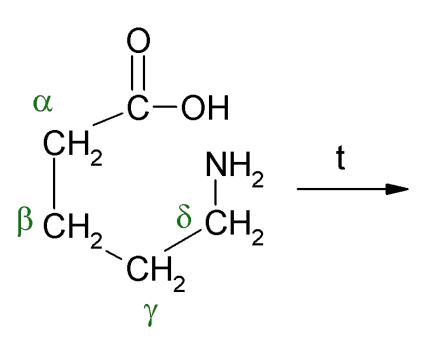
дикетопиперазин


Лактим-лактамная таутомерия

м

β-аминокислоты

ү-аминокислоты


үаминомасляная кислота

ү -бутиролактам

ү-Лактамы являются кетопроизводными тетрагидропиррола (пирролидина), поэтому их называют *пирролидонами*.

δ-аминокислоты

$$\alpha$$
 C
 C
 N
 H
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2

б-аминовалериановая кислота

δ -валеролактам

производные пиперидона-2

M

ω-аминокислоты

$$n H_3N^+ - (CH_2)_5 - COO^- \longrightarrow \begin{bmatrix} \\ \\ \\ \end{bmatrix} NH - (CH_2)_5 - C \end{bmatrix}_n$$

ω-аминокислоты претерпевают межмолекулярное взаимодействие с образованием полимерных структур с амидной связью (полиамидов)

2. Образование комплексных солей металлов

2 CH₃-
$$\overset{\alpha}{\text{CH}}$$
-COOH + Cu(OH)₂ $\overset{\sim}{\text{NH}}_2$

Хелатные соли меди (II) синего цвета

служит качественной реакцией на наличие в молекуле с-аминокарбоксильной функции.

Трилон Б (динатриевая соль этилендиаминтетрауксусной кислоты)

$$^{\Theta}OOCCH_2$$
 > $NCH_2CH_2N < ^{CH_2COO\Theta}_{CH_2COOH} + M^{2+}$ \longrightarrow $HOOCCH_2$

$$\begin{array}{c} \longrightarrow^{\Theta}OOCCH_2 > NCH_2CH_2N < CH_2COO^{\Theta} + 2 H^{\Theta} \\ OOCCH_2 & CH_2COO \end{array}$$

3.Образование межмолекулярных амидных связей

$$R-C=0+NH_2-R'\longrightarrow R-C=0;$$

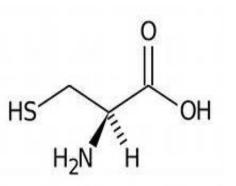
OH NH-R'

R: NH₂CHR"—;

R': -CHR"'COOH.

Аминокислоты нередко применяются в качестве лекарственных средств:

Смешанные К,Мg-соли Asp (аспаркам) или Glu (панангин) используются в кардиологии и неврологии


Met (метионин) используется при лечении заболеваний и токсических поражений печени

Суѕ (ЦИСТЕИН) участвуя в обмене хрусталика глаза, полезен для профилактики и задержки развития некоторых типов катаракты

N-ацетильное производное Cys (АЦЦ), облегчает откашливание при бронхитах.

•Na-соль Glu (глутамат натрия) является очень широко распространенной пищевой добавкой, улучшающей вкус продуктов.

うま味 Умами - "мясной вкус"

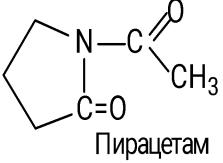
HOOC-CH₂-CH₂-CH-COOH NH₂

Глутаминовая кислота (E620) и её соли: (глутамат натрия E621, глутамат калия E622, диглутамат кальция E623, глутамат аммония E624, глутамат магния E625)- используются как усилители вкуса.

его получают из креветок и внутренностей рыб, водорослей, солода и свеклы.

Глутаминовая кислота и её соли безопасны!

В продуктах питания глутамата натрия должно быть не более 0,8%



Глутамат натрия разрешено добавлять к продуктам питания в количестве 1,5 г на 1 кг или на 2 л.

в сутки не более 9 граммов!

- у-аминомасляная (4-аминобутановая) кислота, принимает участие в обменных процессах головного мозга; лактам ее N-ацетилированной формы (ноотропил, или пирацетам) широко используется в медицине для лечения нарушений функций головного мозга

- Средство для лечения постинсультных больных (церебролизин) состоит главным образом из смеси аминокислот, получаемых в результате гидролиза мозгового вещества - крупного рогатого скота.

Спасибо За Ваще внимание!

M

пара-Аминосалициловая кислота (4-амино-2-гидроксибензойная кислота, ПАСК) и ее натриевая соль обладают бактериостатической активностью в отношении бактерий туберкулеза и являются известным противотуберкулезным препаратом.

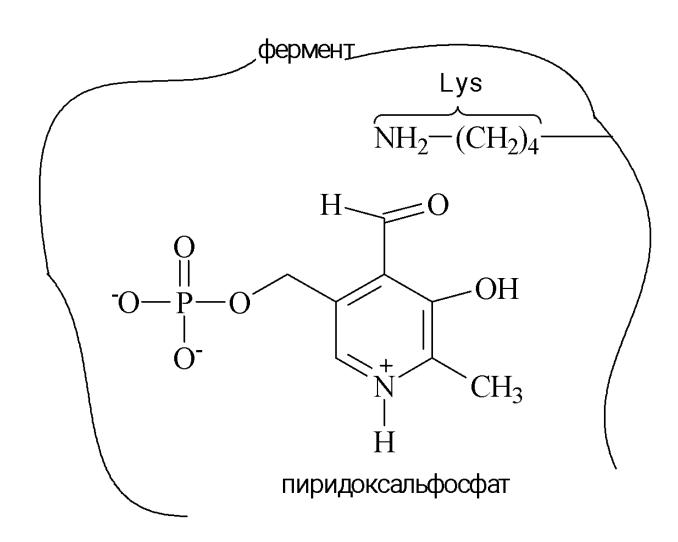
Этиловый эфир 4-аминобензойной кислоты (анестезин)

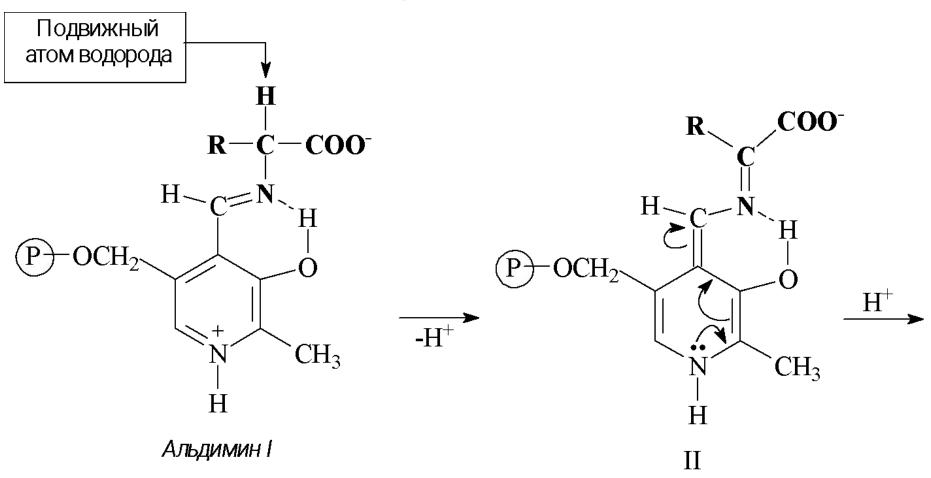
и 2-диэтиламиноэтиловый эфир той же кислоты (новокаин, или прокаин) широко используются в качестве анестетиков:

$$H_3$$
N OH H_2 N OCOOC $_2$ H $_5$ H_2 N COOCH $_2$ CH $_2$ N(C $_2$ H $_5$) $_2$ ПАСК Анестезин Новокаин

Биологическое значение аминокислот

- 1. Аминокислоты являются теми мономерными молекулами, из которых в организме образуются практически все биологически важные биополимеры: простые и сложные белки (именно поэтому природные аминокислоты называют протеиногенными);
 - 2. В ходе обменных процессов,, аминокислоты превращаются в разнообразные биологически важные соединения других классов. Например, Arg служит компонентом цикла образования мочевины, Asp предшествует синтезу пуринов, пиримидинов, щавелевоуксусной кислоты, а без Gly невозможен биосинтез порфиринов, пуринов, глутатиона, креатина;
 - 3. Существенна роль аминокислот как предшественников разнообразных нейромедиаторов:


СН
$$_2$$
СНСОО $^{\odot}$ СН $_2$ СНСОО $^{\odot}$ СН $_2$ СНСОН $_2$ НОСНСН $_2$ NН $_2$ НОСНСН $_2$ NН $_3$ $_{}$ НО ОН $_{}$ НО ОН $_{}$ 3,4-Диоксифенилаланин Дофамин Норадреналин


отвечает за развитие аллергических реакций

$$HO \longrightarrow CH_2CHCOO^{\odot}$$
 $HO \longrightarrow O$ CH_2CHCOO^{\odot} WH_3 . Гормон щитовидной железы (регулирует обмен веществ) CH_2CHCOO^{\odot} WH_3 WH

серотонинэргический медиатор, вызывает торможение

Перенос аминогруппы

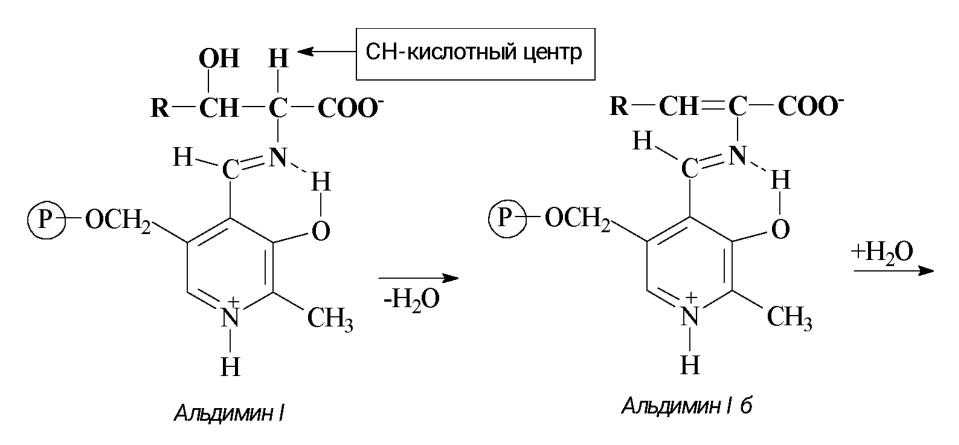
Перенос аминогруппы

Пиридоксаминфосфат

α-оксокислота

Декарбоксилирование в организме

$$\mathbf{R}$$
— \mathbf{C} — \mathbf{C} \mathbf{CHR}
 \mathbf{P} — \mathbf{O}
 \mathbf{CH}_2
 \mathbf{P} — \mathbf{O}
 \mathbf{CH}_3
 \mathbf{CH}_3


Декарбоксилирование в организме

Альдимин Ia

Пиридоксальфосфат

биогенный амин

Элиминирование

Элиминирование

$$P$$
 OCH₂ OH $+$ R-CH=C-COO-NH₂ $+$ V

Пиридоксальфосфат