Nº11.

Реакции элиминирования

Реакции отщепления (элиминирования, elimination), Е или El

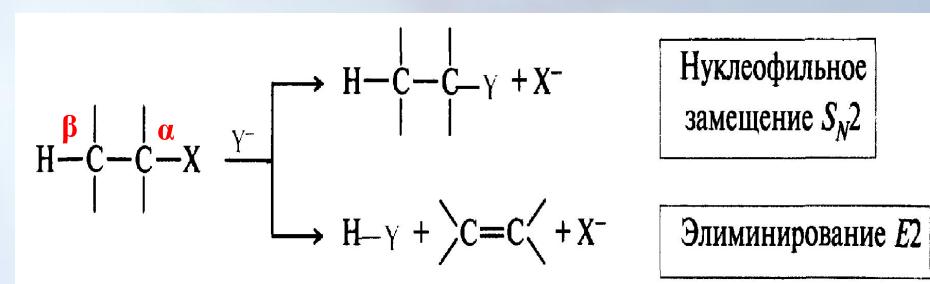
- реакции, при которых из молекулы удаляются два атома или две группы атомов без замещения их другими атомами или группами.

$$\begin{array}{c|c}
 & H \\
\hline
C & C \\
X & C
\end{array}
\xrightarrow{\text{Основание}} C = C + H^+ + X^-$$

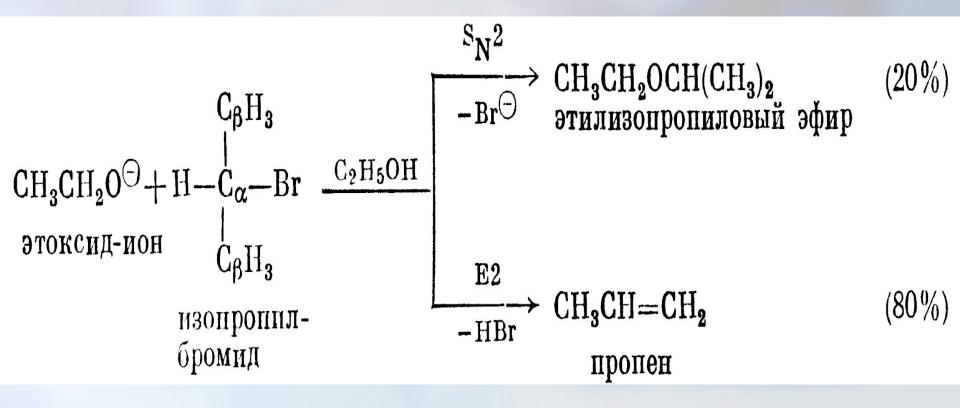
Классификация реакций элиминирования

$$Y$$
— C_{β} — C_{α} —

β-элиминирование



Реакции элиминирования



Реакции замещения всегда в той или иной мере сопровождаются реакциями отщепления

Реакции β-элиминирования и замещения:

Дегидрогалогенирование алкилгалогенидов (получение алкенов):

$$R > C - C < R'' + KOH + ROH R > C = C < R''$$
H Hal

Дегидратация спиртов

(получение алкенов):

Механизмы элиминирования

Реакции отщепления могут протекать как по мономолекулярному, так и по бимолекулярному механизму.

Бимолекулярное отщепление (элиминирование) Е2.

$$B: \stackrel{\frown}{\longrightarrow} H \stackrel{\frown}{\longrightarrow} \stackrel{\frown}{\longleftarrow} \stackrel{\frown}{\longleftarrow} \stackrel{\frown}{\longrightarrow} \longrightarrow \stackrel{\frown}{\longrightarrow} \longrightarrow \stackrel{\longrightarrow$$

основание субстрат

активированный комплекс

алкен

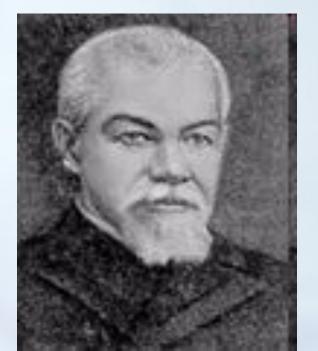
Бимолекулярное отщепление (элиминирование) Е2.

Скорость этого процесса выражается уравнением

$$v = k' [B^{\odot}][H - C - C - L],$$

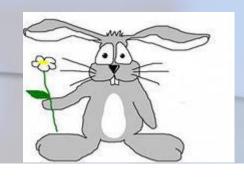
РЕАКЦИИ Е 2

E2 бимолекулярное элиминирование


спирты, тиолы, амины

НАПРАВЛЕНИЕ ЭЛИМИНИРОВАНИЯ

Правило Зайцева


В случае нессиметричных алкилгалогенидов отщепление атома водорода происходит от наименее гидрогенизированного атома углерода с образованием более замещённого алкена

ЗАЙЦЕВ Александр Михайлович (Россия) (2.VII.1841 - 1.IX.1910)

Правило Зайцева

2-бромбутан

против правила Зайцева

Термолиз четвертичных аммониевых оснований, **E2**

Август-Вильгельм Гофман

(08.04.1818 - 05.05.1892)

Получение гидроксидов четвертичного аммония

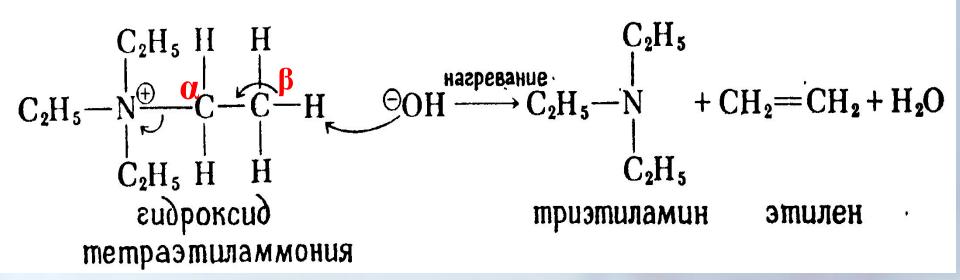
1 стадия

Получение гидроксидов четвертичного аммония

2 стадия

$$2R-N^{\oplus}-R Cl^{\ominus}+Ag_{2}O+H_{2}O \rightarrow 2R-N^{\oplus}-R OH+2AgCl\downarrow R$$

Правило Гофмана



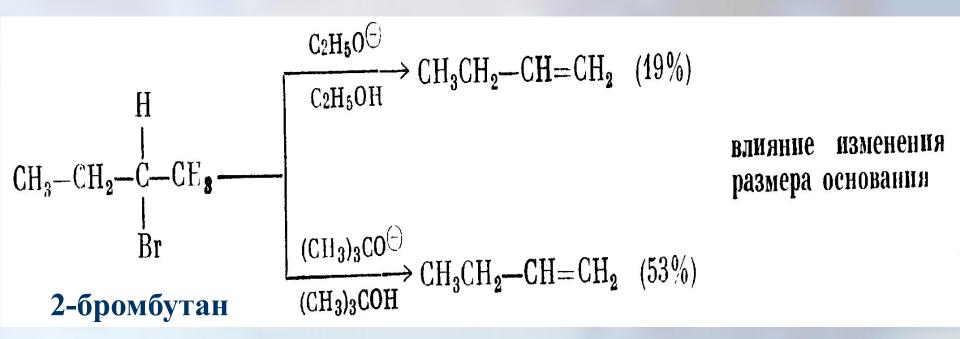
При термолизе четвертичных аммониевых оснований преимущественно образуются менее замещённые алкены.

$$HO^{-} + H^{-} \stackrel{\beta}{\leftarrow} \stackrel{\downarrow}{\leftarrow} C^{-} \stackrel{+}{\leftarrow} (CH_{3})_{3} \xrightarrow{t} HOH + C = C \left(+ N(CH_{3})_{3} \right)$$

Гофмановское расщепление, реакция Гофмана

Реакция Гофмана

$$(CH_3)_3$$
N— $CH(CH_3)CH_2CH_3$ \ominus OH — нагревание — H_2O гидроксид втор-бутилтри— метиламмония H_3 H_4 H_5 $H_$


Факторы, влияющие на % содержание продуктов отщепления по пр. Гофмана

1. Увеличение объёма основания

Увеличение объёма основания

этокси-анион

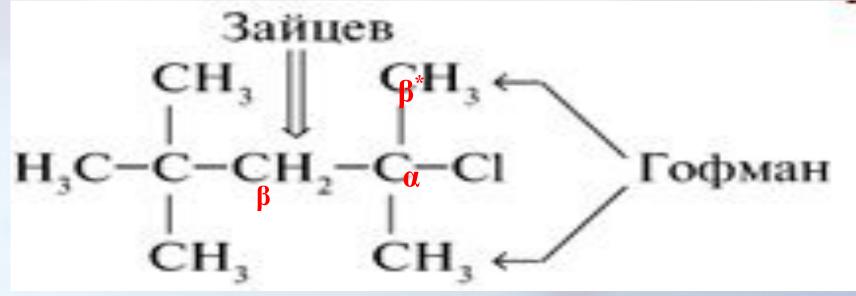
трет.бутокси-анион

2. Размер заместителей при СВ

влияние варьирования заместителей при С_в

2-бром-2,3-диметилбутан

(две метильные группы связаны с С_в)



2.Размер заместителей при СВ

2-бром-2,4,4-триметилпентан

(трет-бутильная группа связана с С_в)

Расщепление сульфониевых солей:

$$(CH_3)_2CH - CH - CH_3 \xrightarrow{\beta^*} COH - CH_3 \xrightarrow{Harpebahue} (CH_3)_2CHCH = CH_2 > (CH_3)_2C = CHCH_3 + CH_3 - S - CH_3 + H_2O$$

распадаются в соответствии с правилом Гофмана

Какой из геометрических изомеров образуется?

$$R > C = C > R > H > C = C > R$$
 порядок стабильности $R > R$ порядок стабильности $R > R$ исс-алкен

Транс-изомера обычно образуется больше, чем цис-изомера вследствие большей термодинамической выгодности первого.

Дегидробромирование

$$CH_3CH_2CH_2$$
— $CHBr$ — CH_3 $\xrightarrow{-HBr}$ CH_3CH_2CH = $CHCH_3$ + CH_3CH_2CH = CH_2 CH_3CH_2CH = CH_3 CH_3CH_3 CH_3CH_3 CH_3 CH_3

цис-2-пентен: транс-2-пентен = 1:3

Мономолекулярное отщепление (элиминирование) E1.

Мономолекулярное отщепление представляет собой реакцию, скорость которой определяется только концентрацией субстрата.

Механизм Е1

Е1 мономолекулярное элиминирование

(1)
$$-\overset{Z_{1}^{X}}{C} -\overset{-}{C} -\overset{-}{C} -\overset{-}{C} -\overset{+}{C} -\overset{+}{C} -\overset{+}{C} -\overset{+}{C} -\overset{-}{C} -$$
 медленно Н нарбониевый ион

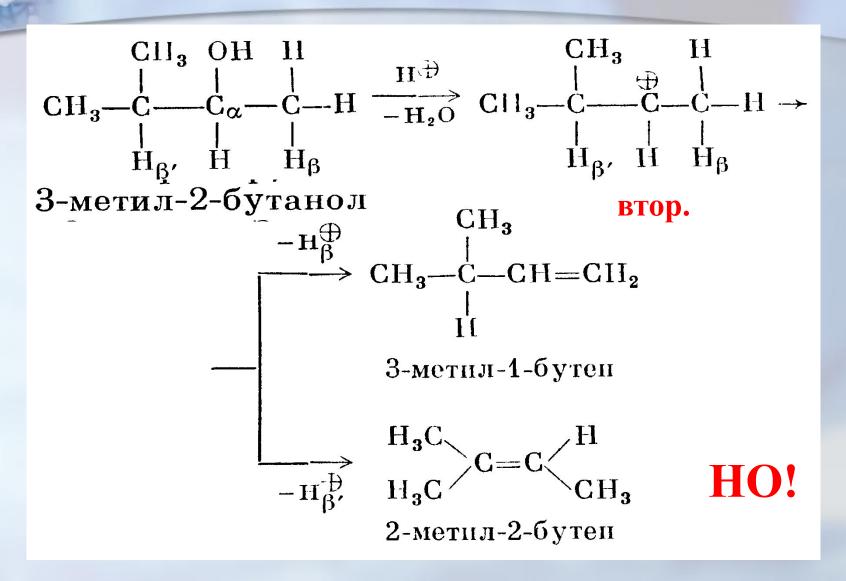
(2)
$$-\overset{+}{C} -\overset{-}{C} -\overset{-}{C} - \xrightarrow{C} - \xrightarrow{$$

Процессы S_N1 и E1 имеют общую стадию образования карбокатиона.

$$H-C-C-X \longrightarrow H-C-C^+ \longrightarrow C=C$$
 Нуклеофильное замещение S_N1 $\longrightarrow C=C$ Элиминирование $E1$

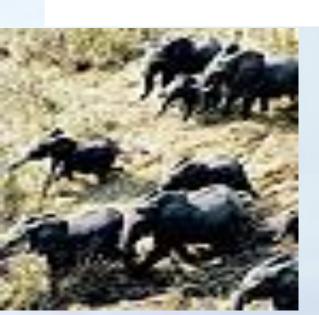
Дегидратация третичных спиртов, Е1

$$(CH_3)_3COH \xrightarrow{H^+} CH_2 = C \xrightarrow{CH_3} + H_2O$$
трет-бутиловый 2-метилпропен (изобутилен)

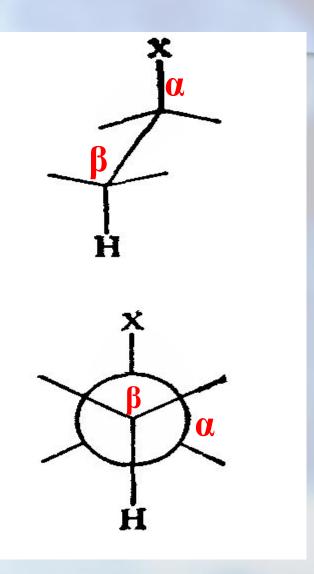

$$(CH_3)_3C_{-()}$$
 $\xrightarrow{+}$ $(CH_3)_3C_{-()}$ $\xrightarrow{+}$ $\xrightarrow{+}$ $(CH_3)_3C_{-()}$ $\xrightarrow{-}$ $(CH_3)_3$ $(CH_3)_3C_{-()}$ $\xrightarrow{-}$ $(CH_3)_3$ (CH_3)

Реакции E1 протекают по правилу Зайцева

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{--CH}\text{--CH}_3 & \xrightarrow{\text{E1}} & \text{CH}_3\text{CH}=\text{CHCH}_3 \gg \text{CH}_3\text{CH}=\text{CH}_2\\ & \text{--HBr} & \\ & \text{Br} & \\ & \text{Br} & \end{array}$$


Перегруппировки могут сопровождать реакции E1

1.2 – гидридный сдвиг

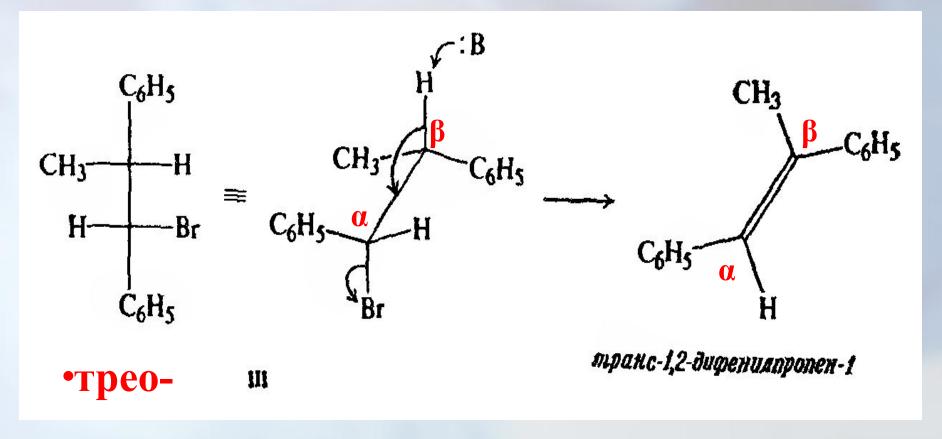


Дегидратация, Е1

$$CH_3$$
 Н CH_3 Н Н CH_3 CH_3 Н Н CH_3 $CH_$

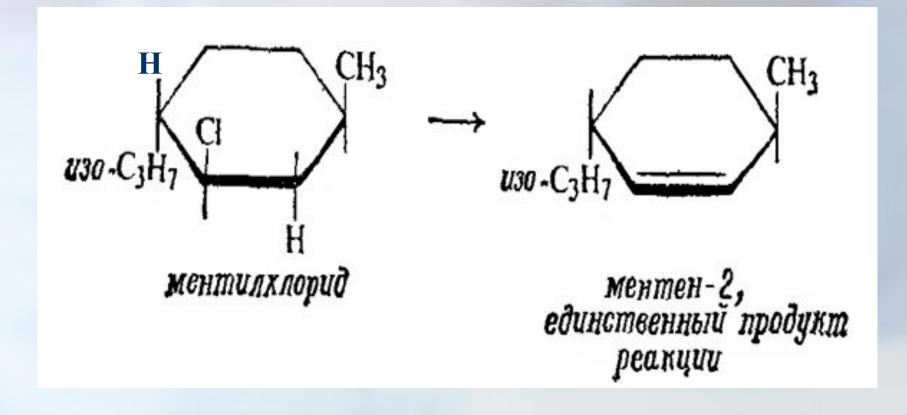
Геометрия Е2 элиминирования

ТРАНС (АНТИ)-элиминирование

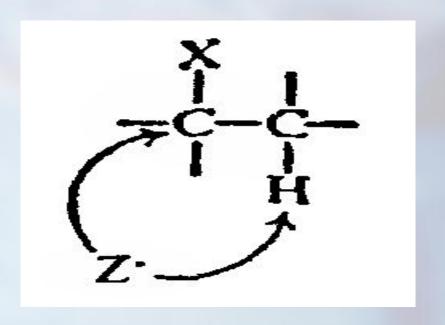

Стереохимия реакций отщепления

реакция протекает как транс-элиминирование:

$$C_6H_5$$
 C_6H_5 C_6H_5



Стереохимия реакций отщепления



Реакция E2 полностью стереоспецифична

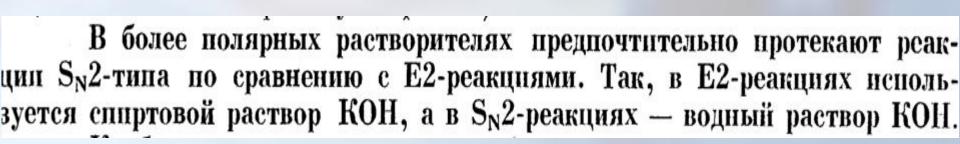
Сравнение реакций элиминирования и замещения

Сравнение реакций элиминирования и замещения

Порядок изменения реакционной способности алкилгалогенидов в реакциях E2- и E1-элиминирования одинаковый.

Реакциоиная способность в реакциях Е2- и Е1-элиминирования:

третичный > вторнчный > первичный



RX = первичиый, вторичный, третичный

Процент замещения возрастает

Элиминирование (Е2) и замещение (S_N2)

Реакции элимнирования и замещения — некоторые закономерности

Повышение температуры всегда увеличивает степень элиминирования за счет замещения.

