
ЭКОЛОГИЯ

Лекция № 9 Технологический подход к проблемам загрязнений окружающей среды: пестицидами и опасными соединениями

Литература Небел *Б*. Наука об окружающей среде. М.: Мир, 1993. Т. 2. 336 с.

- Одум Ю. Экология Учебное пособие для вузов. М.: Изд. «Мир», 1986. Т. 1. 328 стр.
- http://www.unesco.org
- Материалы, представленные студентами, прослушавшие курсы ТЭМ (2009-2010г.г.)

НОРМИРОВАНИЕ – ОСНОВНОЙ ЭКОЛОГИЧЕСКИЙ РЫЧАГ РЕГУЛИРОВАНИЯ НЕГАТИВНОГО ВОЗДЕЙСТВИЯ ЧЕЛОВЕКА НА ОС

- Предельно допустимая концентрация (ПДК)— утвержденный в законодательном порядке санитарно-гигиенический норматив содержания вредного вещества в окружающей (или производственной) среде, практически не влияющего на здоровье человека и не вызывающего неблагоприятных последствий.
- Предельно допустимый выброс (ПДВ) утвержденный норматив предельно допустимого выброса вредного вещества в единицу времени, не превышающую его ПДК для населения, растительного и животного мира с усреднением 20- минутный период времени.
 - Нормативы устанавливаются для каждого источника загрязнения отдельно.
- 1887 г. Германия первые законодательный акты регламентирующие вредные вещества как пищевые добавки.

По степени воздействия на организм вредный вещества подразделяются на четыре класса опасности:

I	вещества чрезвычайно опасные		
II	вещества высокоопасные		
III	вещества умеренно опасные		
IV	вещества малоопасные		

Примеры некоторых опасных веществ

```
Чрезвычайно опасные вещества (I) Бензапирен — Берилий
                              Диэтилртуть Пентахлордифенил Ртуть
                              Полоний - Оксид свинца —
                               Растворимые соли свинца
Высокоопасные вещества (II)
                              ДДТ – Мышьяк – Натрий - Нитриты
                              Стронций (Sr2+) Сурьма Формальдегид
                              Хлороформ — Цианиды (по CN-) —
                              Четыреххлористый углерод – Хлор (Cl)
Умеренно опасные вещества (III) Алюминий Марганец Медь Никель
                              (суммарно) Нитраты (по NO3) Озон
                              Фофаты (РО4) — Хром (Ст6+) Цинк
                             Этиловый спирт
                               Сероводород — Сульфаты — Хлориды
Малоопасные вещества (IV)
```

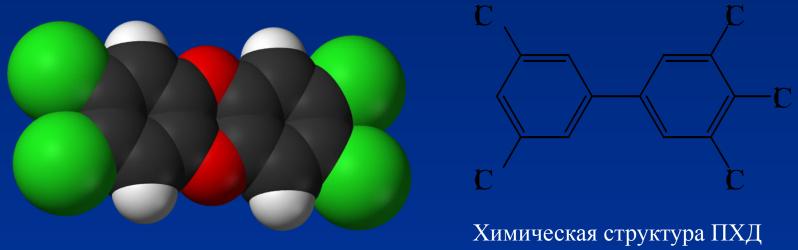
Для сравнительной оценки загрязнения воздушной среды в России используются различные индексы,

которые позволяют учесть присутствие нескольких загрязняющих веществ.

ИЗА =
$$\sum_{i=1}^{n} \left(\frac{q_{cp.i}}{\Pi \square K_{cc.i}} \right)^{c_i}$$
,

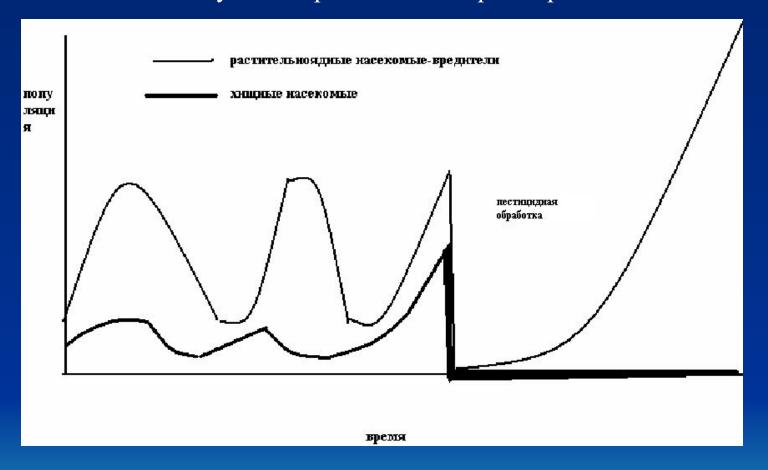
где

 c_i — безразмерная константа приведения степени вредности i-ого вещества к вредности диоксида серы, зависящая от того, к какому классу опасности принадлежит загрязняющее вещество (см. табл. 4).


ПДК диоксид серы максимально-разового воздействия - 0,5 мг/м3. Диоксид серы токсичен.

При вдыхании сернистого газа более высокой концентрации — удушье, расстройство речи, затруднение глотания, рвота, возможен острый отек легких

Структурные формулы ксенобиотиков (диоксиноподобных веществ)


пока не найдены микроорганизмы, эффективно разрушающие диоксины

Объёмная модель диоксина

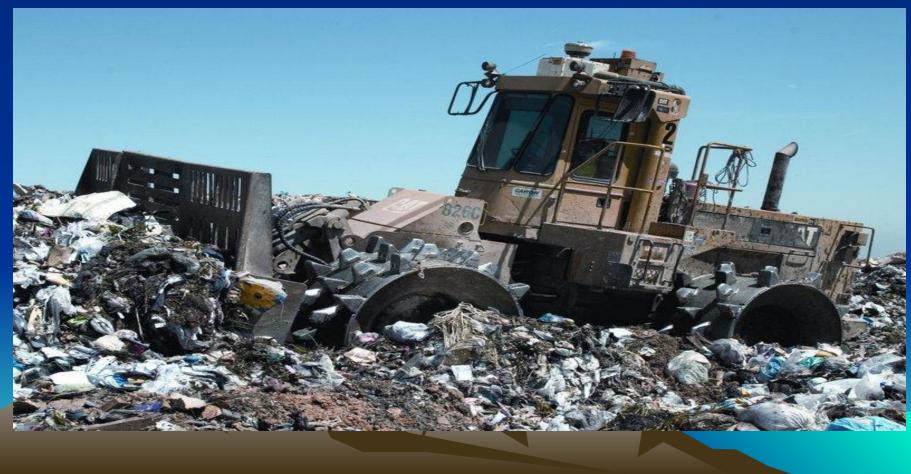
Наибольшее накопление диоксинов происходит в рыбах, что представляет серьезную угрозу для народов, традиционно употребляющих в пищу большое количество рыбы и других морепродуктов

• Химический пестицид (ксенобиотик) часто действует на хищника сильнее, чем на вредителя. Освободившись от естественного врага, популяция вредителя быстро возрастает

Нормативы содержания диоксинов в объектах окружающей среды в различных странах

Среда	Ед. изм.	США	Германи я	Италия	Росси я
Атмосферный воздух населенных мест	пг/м³	0,02		0,04	0,05
Воздух рабочих помещений	$\Pi\Gamma/M^3$	0,13		0,12	
Вода	пг/л	0,013	0,01	0,05	20
Почва сельскохо - зяйственных угодий	нг/кг	27	меньше 5	10	
Почва не используемая в сельском хозяйстве	нг/кг	1000		50	
Пищевые продукты	нг/кг	0,001			
Молоко (пересчет на жир)	нг/кг		1,4		5,2
Рыба(пересчет на жир)	нг/кг				88

Суточные поступления диоксина в организм человека в США из разных источников (1992 г.)


Источник	Содержание	Суточные	Общие поступления	
ИСТОЧНИК	диоксина нг/кг	поступления г/сутки	пг/сут ки	%
Пыль	8	100мг/сутки	0,8	0,7
Воздух	$0,095 \text{ пг/м}^3$	23м ³ /сутки	2,2	2,0
Вода	0,056 пг/л	1,4 л/сутки	0,008	0,01
Рыба	1,2	6,5	7,8	7,3
Молоко	0,07	254	17,8	16,5
Молочные изделия	0,36	55	19,8	18,4
Яйца	0,14	27	3,8	3,5
Говядина и телятина	0,48	88	42,2	39,3
Свинина	0,26	28	7,3	6,8
Птица	0,19	31	5,9	5,5
Всего			108 пг	100%

Классификация отходов

- Классификация отходов
- Отходы различаются:
 - по происхождению:
 - отходы производства (промышленные отходы)
 - отходы потребления (коммунально-бытовые)
 - по агрегатному состоянию:
 - твердые
 - жидкие
 - газообразные
 - по классу опасности:
 - 1й чрезвычайно опасные
 - 2й высоко опасные
 - 3й умеренно опасные
 - 4й малоопасные
 - 5й практически неопасные

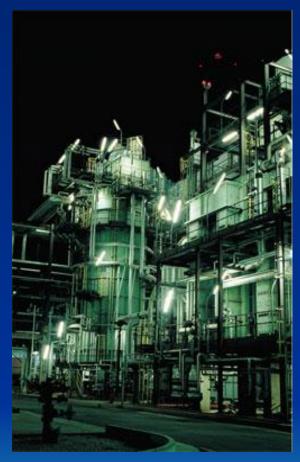
Проблемы ликвидации отходов

Некоторые источники образования ПХДД и ПХДФ в США

Источник эмиссии	I-TEQ	Размерность	Всего, г/год	
	DF		1995	1987
Сжигание бытового мусора	38,2	нг/кг	1100	7915
Сжигание опасных отходов	3,83	нг/кг	5,7	5,0
Сжигание медицинских отходов	589	нг/кг	461	2440
Сжигание сточных вод	6,94	нг/кг сухого осадка	14,6	6,0

Период полувыведения высокотоксичного 2,3,7,8-ПХДД из живых организмов составляет (в днях)

МЫШЬ	15
крыса	30
морская свинка	30 - 95
обезьяна	455
человек	2150 (4-5 лет)


Эффективности накопления диоксина в органах, тканях и выделениях человека в сравнении с кровью (даны коэффициенты распределения):

жировая ткань	300
кожа	30
печень	25
грудное молоко	13
стенки кишечника	10
органы с интенсивным кровообращением (мозг, селезенка, щитовидная железа)	10
почки	7
мышцы	4
кровь	1
фекалии	0,6
желчь	0,5
плацента и кровь плода	0,1
моча	0,00005

Нетермические методы детоксикации диоксинов

Процесс	Степень разложения, %	Влияние на окружающую среду
Фотолиз	>99,8	Не оказывает
Радиолиз	97	Радиация, образование малохлорированных диоксинов
Гидродехлорирование	>99	Образование токсичных побочных продуктов
Дехлорирование	>99	Не оказывает
Каталитическое окисление	>99	Требует высоких температур и давления
Озонирование	97	Остатки продуктов реакции
Разложение иодидом хлора	92	Образование хлорорганических остатков

«чистый уголь»

Кислые стоки угольной шахты окрасили русло ручья в оранжевый цвет

промышленная IGCC-электростанция в Италии, действуют с 1994 г., суммарная мощность - 3,6 ГВт

Годовые выбросы от угольной ТЭС мощностью 1000 МВт

ст. Злобин Н. 787

- 7 млн.т в год углекислого газа (19 тыс. т в сутки);
- 50 -100 тыс. т в год **окислов серы**;
- 25 тыс. т в год **окислов азота**;
- 20 тыс. т в год твердых частиц;
- 400 т в год токсичных металлов:
- суточный выброс золы в атмосферу составляет 35 55 т, и при высоте трубы 150–200 м радиус загрязненной территории равен примерно 50 км

ОСНОВНЫЕ ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ЭКСПЛУАТАЦИИ АЭС

- Вывод из эксплуатации после исчерпания ресурса
- Обращение с радиоактивными отходами
- Обращение с отработавшим ядерным топливом

Обращение с радиоактивными отходами (PAO)

Жидкие РАО

- хранение в специальных емкостях-хранилищах
- нахождение в открытых водоёмах и специальных бассейнах
- подземное захоронение в пластах-коллекторах
- сброс на специально выделенных участках морей и океанов

Твердые РАО

- хранение в металлических ёмкостях
- плавление
- цементирование
- битумирование
- прессование
- сжигание
- остекловывание

Так выглядят низкоактивные радиоактивные отходы после специальной обработки - остекловывания

Сложность проблем обращения с отработанным ядерным топлевом (ОЯТ)

- высокая активность
- значительное тепловыделение после выгрузки из реактора
- наличие в составе ОЯТ значительного количества делящихся веществ

Наиболее эффективная структура обращения с ОЯТ и РАО - во Франции

Швеция

метод окончательного захоронения герметичных медных контейнеров с топливом на глубине приблизительно 500 метров

США

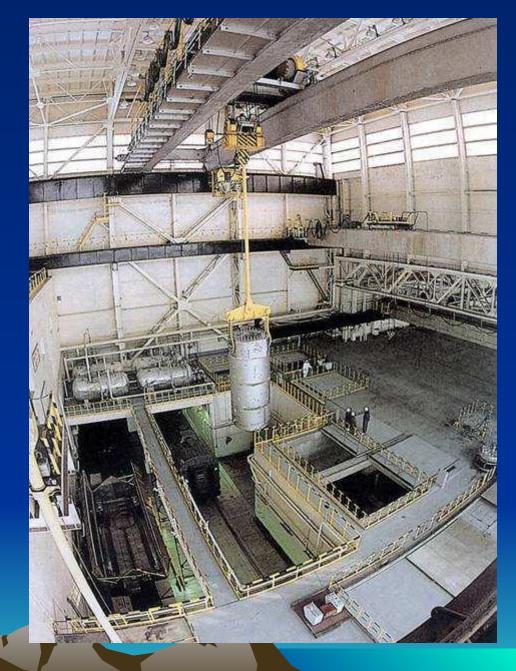
непосредственное складирование ОЯТ в металлических контейнерах в глубоких геологических формациях

Франция

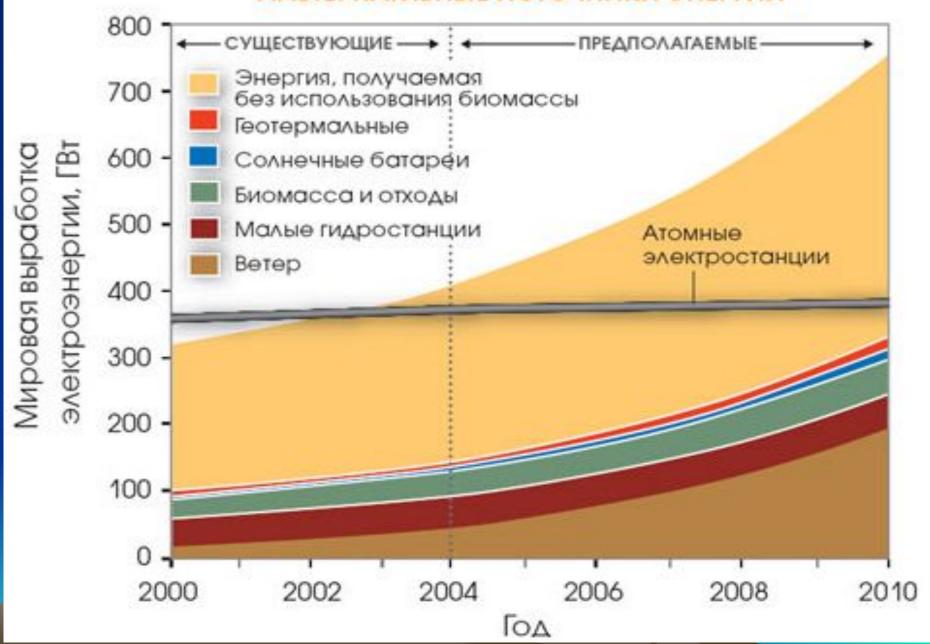
Многокомпонентная ядерная энергетика, включающая легководные реакторы, быстрые реакторы - "дожигатели", комплексы переработки ОЯТ и РАО

Проект хранилища РАО и ОЯТ в глубине горы Юкка (США)

пятимильный туннель и серия штреков



Хранилище рассчитано на 10 тысяч лет


Емкость хранилища 77 тыс. тонн РАО

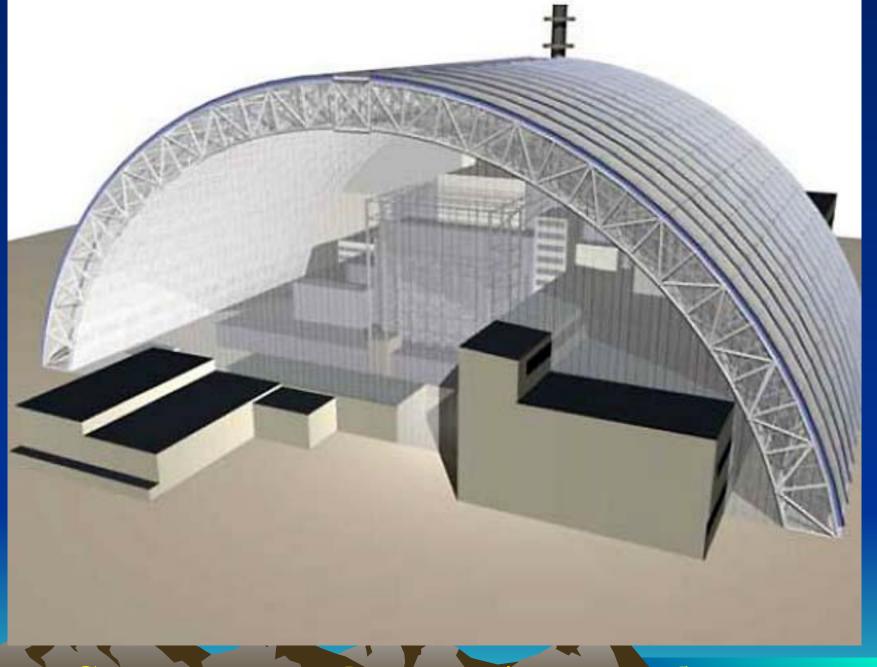
отходы заложены в стальные цилиндрические кассеты

Так выглядит современное хранилище РАО и ОЯТ

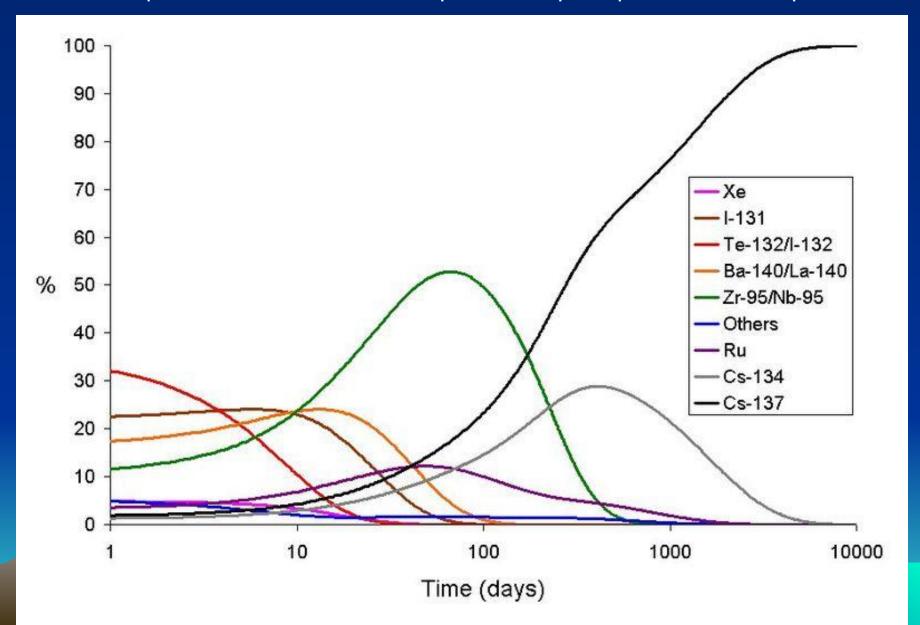
АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Страны с атомными электростанциями

после 1979 года, когда произошла авария на атомной электростанции «Тримайл-Айленд», в США не было введено в строй ни одного нового ядерного реактора.

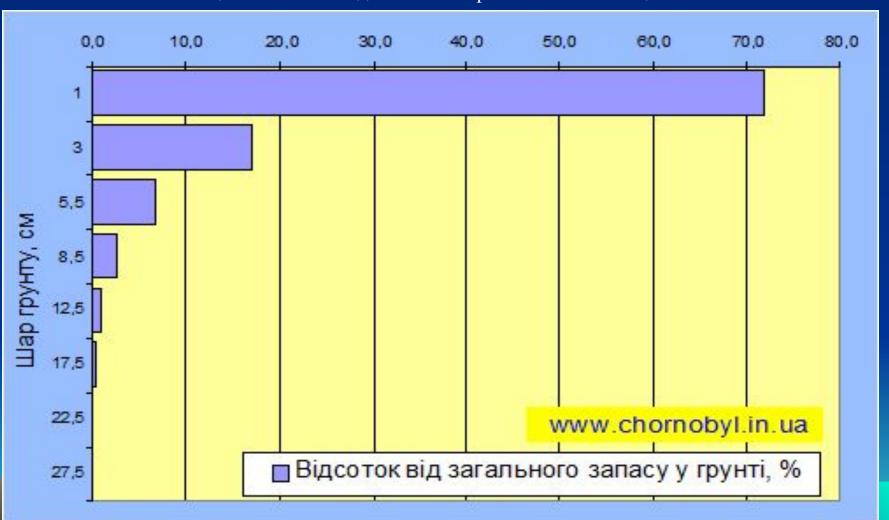

электростанция «Тримайл-Айленд»

Авария



- Взрыв произошел примерно в 1:24 26 апреля 1986 года на 4-м энергоблоке Чернобыльской АЭС.
- Здание энергоблока частично обрушилось, при этом, как считается, погиб всего 1(!!!) человек.
- Положение усугублялось тем, что в разрушенном реакторе продолжались неконтролируемые ядерные и химические (от горения запасов графита) реакции с выделением тепла, с извержением из разлома в течение многих дней продуктов горения высокорадиоактивных элементов и заражении ими больших территорий.

Строение саркофага над 4-м энергоблоком


Процентное соотношение загрязнения, создаваемого различными изотопами через некоторое время после аварии

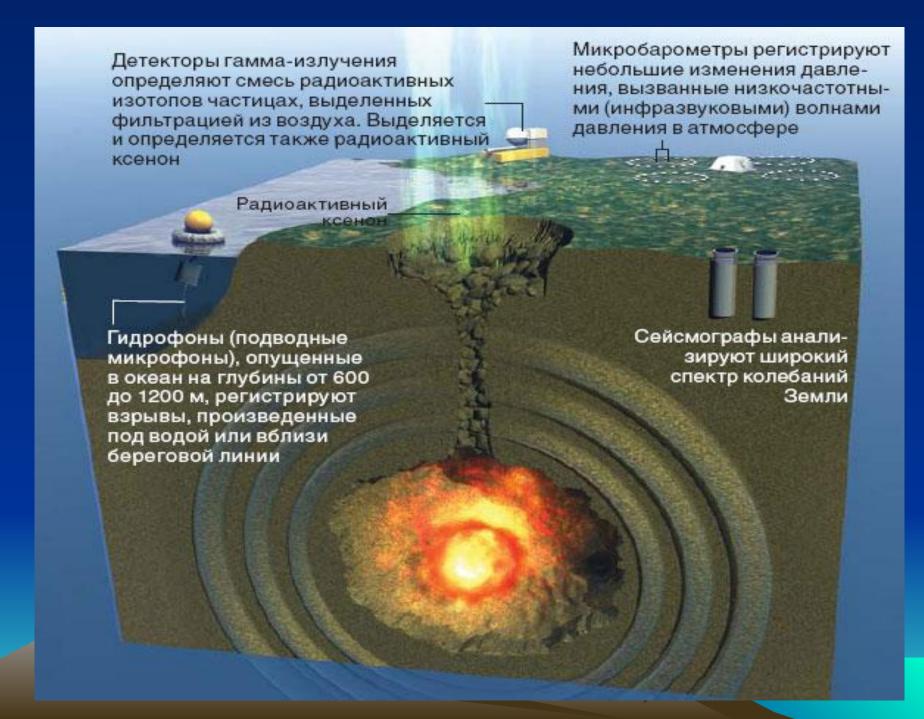
Замещение элементов (Сѕ137)

Диаграмма распределения Cs 137 (замещает K) в почвенном профиле дерново-подзолистых почв Чернобыльской зоны отчуждения (наиболее распространенный тип почв)

7 % составляет кальций от всего осадочного материала 90 Sr замещает его в живых тканях

Рыба Карп в реке Припять

На вопрос:» Что же Вы сделали с этой рыбкой?», рыбак ответил: «Ну, сколько могли — съели сами, друзей угостили... да и вообще у меня 2 кошки дома!»


Рыжий лес - одно из наиболее уникальных мест чернобыльской зоны, где и сегодня можно визуально наблюдать действие радиации на живые организмы

Рыжий лес до Мутации

Рыжий лес после аварии на ЧАЭС

Кузин А.М.

Роль природного радиоактивного фона и вторичного биогенного излучения в явлении жизни. – М.: Наука, 2002. – 79 с.

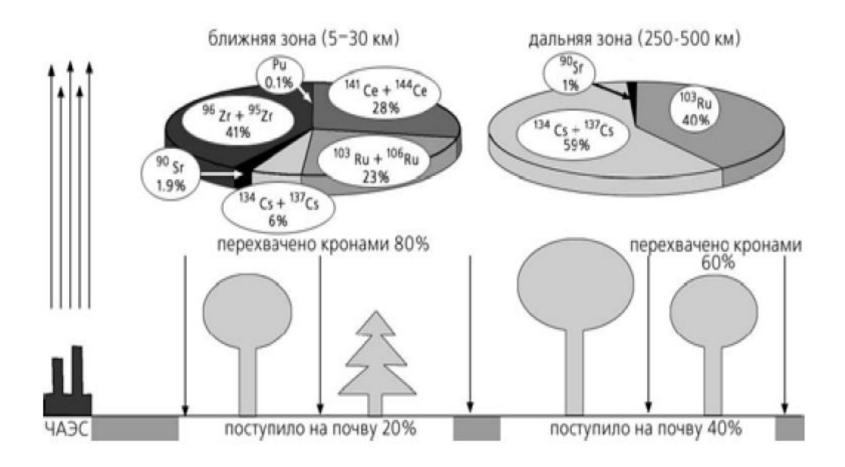
ISBN 5-02-006416-5

В монографии представлен новый взгляд на проблемы происхождения жизни. Особое внимание уделяется роли природного радиационного фона, необходимого для явления жизни. Впервые анализируются особенности физико-биологических свойств вторичного биогенного излучения. Показана универсальность этого эффекта, его общебиологическое значение.

Для биофизиков, радиобиологов, биохимиков, а также специалистов в области фотобиологии.

По сети АК ISBN 5-02-006416-5

- © Российская академия наук, 2002
- © Издательство "Наука", 2002


Мощности атомной радиации, вызывающие реально наблюдаемые биологические эффекты – в сравнении с природной атомной радиацией

Мощность, Гр/сутки	Биологические эффекты		
	Животные	Растения	Простейшие
100	Немедленная гибель Гибель за 30–60	Угнетение развития Угнетение развития	
10	суток		
1		CEROGEROUSES ON	Стимуляция развития
10^{-1}	Стерильность	anni bandina	end organisaen i
10 ⁻²	Сокращение сроков жизни	Стимуляция развития	
10^{-3} 10^{-4}	Увеличение сроков	Control of the second of the s	
10-5	жизни		
10-6	Природная	атомная	радиация

Таблица 14 Содержание урана в водах морей и океанов

Содержание урана, 10 ⁻⁷ г/л
4,4–15
14–18
7–22
13–51
30–100
300-600
3,3–36
14–37
15-47

Первичное распределение радиоактивных веществ и радионуклидный состав выпадений в лесных экосистемах.

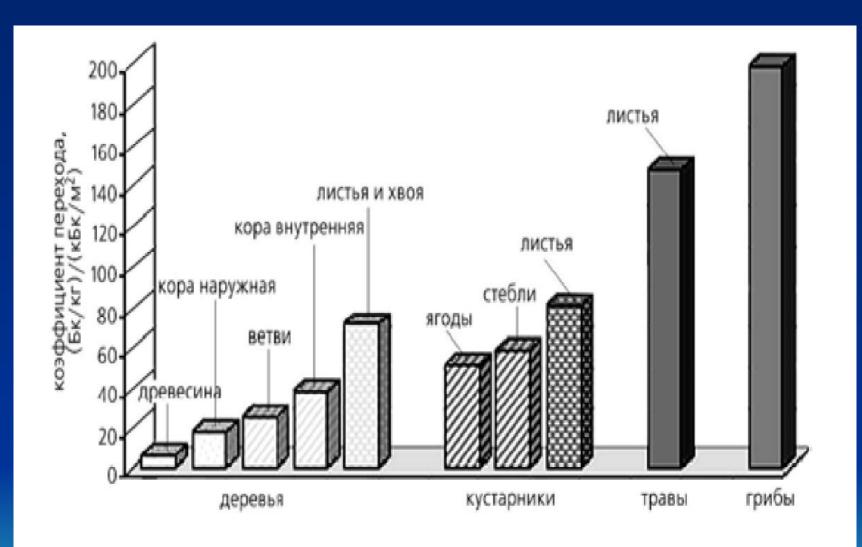
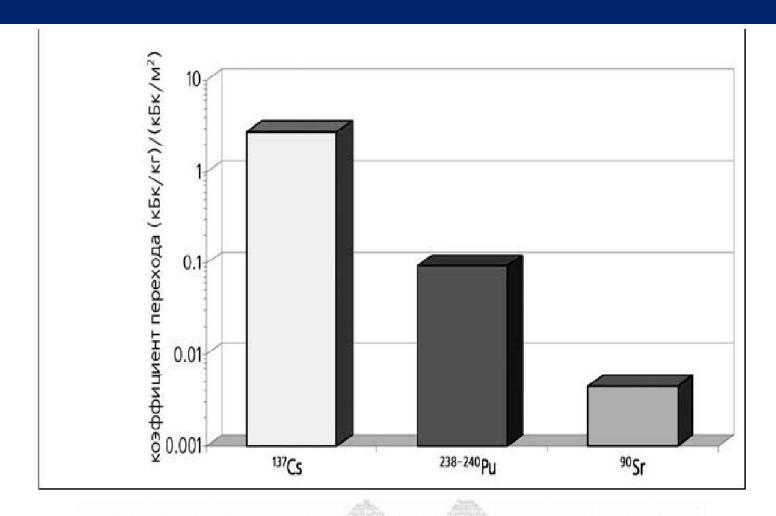
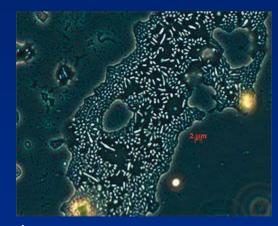



Рис.5. Накопление "Сs в растениях и грибах.

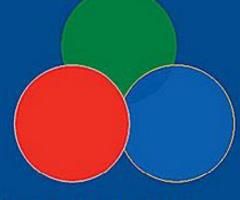
Накопление различных радионуклидов в грибах, произрастающих в пределах одного экотопа. K_n — коэффициент перехода.

Слабонакапливающие радиоцезий грибы

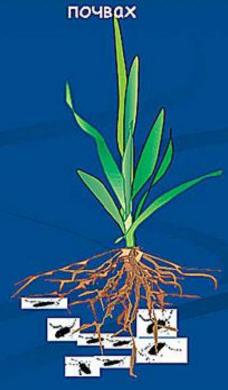
Средненакапливающие радиоцезий грибы


Сильнонакапливающие радиоцезий грибы

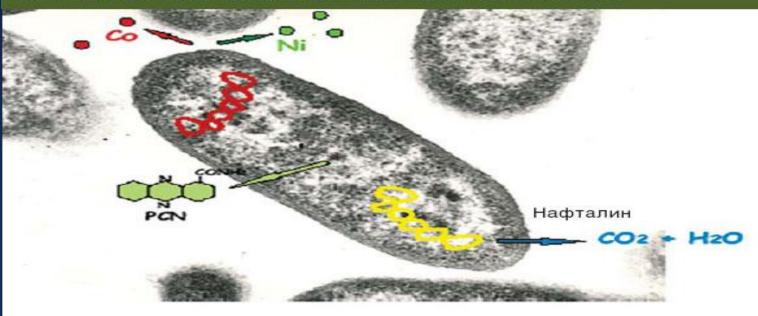
Процесс поедания нефти микроорганизмами



Конструирование мультифункциональных штаммов PGPR Pseudomonas


Инокуляция семян мультифункциональными штаммами и выращивание растений на загрязненных

Стимуляция роста растений и защита от фитопатогенов



Деградация ПАУ

Устойчивость к тихелым металлам/металлоплам

КОНСТРУИРОВАНИЕ ШТАММА Р. CHLORORAPHIS PCL1391 (PBS16, PBS501), СПОСОБНОГО К РАЗЛОЖЕНИЮ ПАУ И УСТОЙЧИВОГО К ТЯЖЕЛЫМ МЕТАЛЛАМ

pBS216 — плазмида, позволяющая бактериям утилизировать нафталин и другие углеводороды нефти

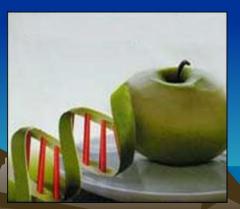
ΓΜΟ

Генетически модифицированные организмы

(ГМО) – это живые организмы, которым путем внедрения чужеродных генов были приданы новые свойства. Технологию, позволяющую создать ГМО

- генную инженерию — часто называют современной биотехнологией.
 Наиболее массово эта технология применяется в сельском хозяйстве.

Например, создан картофель, имеющий ген земляной бактерии, который


придает ему устойчивость к колорадскому жуку. Однако более 80%

выращиваемых сегодня ГМ растений – это соя и кукуруза с внедренным геном устойчивости к гербицидам, который позволяет им выживать после

обильного опрыскивания химикатами.

Биологические риски:

- непредсказуемость места интеграции рекомбинантных ДНК,
- слабая изученность регуляции и функционирования генома высших растений,
- плейотропный эффект, (способности одного гена влиять на несколько фенотипических признаков)
- - нарушение стабильности генома и изменение его функционирования,
- нарушение стабильности самого встроенного гена,
- - наличие во встраиваемом фрагменте ДНК технологического мусора,
- - аллергические и токсические эффекты чужеродного белка.
- Взаимодействие ГМО в экосистемах.

Россия и зоны, свободные от ГМО

- запрет на выращивание ГМ-культур;
- обеспечение четкой и заметной маркировки продукции, содержащей ГМО;
- запрет на использование ГМО в детском питании.

Биобезопасность генетически модифицированных организмов: проблемы и решения

Продукты ORGANIC

- В России ввели полную маркировку продуктов, содержащих ГМО генномодифицированные организмы.
- Производителям необходимо будет указывать, что продукт либо содержит живые ГМО, либо получен с их использованием даже при малых концентрациях таких примесей. При этом новые пищевые продукты, произведенные из ГМО растительного происхождения и изготовленные в России, а также импортные продукты питания с содержанием ГМО, подлежат госрегистрации.
- Ранее производители были обязаны информировать потребителей, если в составе продукции ГМО составляли более 0,9 процента.