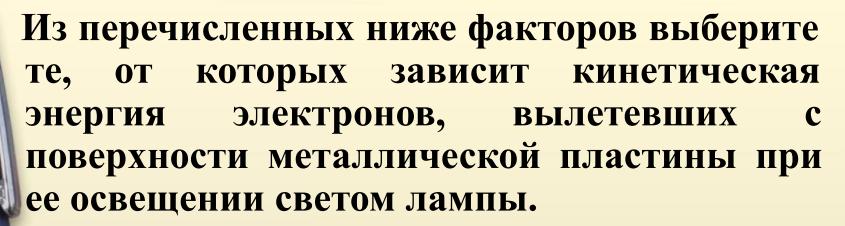
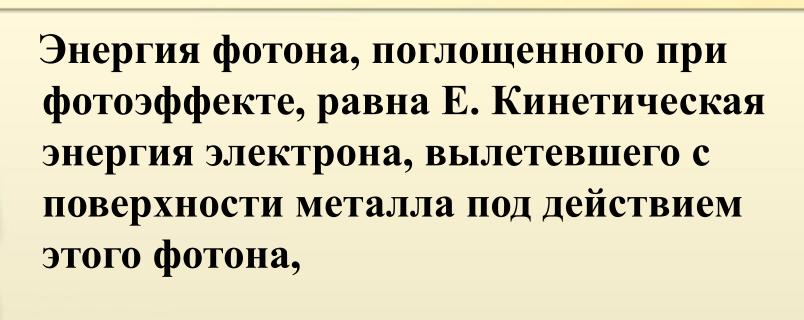
БОЛЬШЕПОДБЕРЕЗИНСКАЯ СОШ ИМ. А.Е.КОШКИНА КАЙБИЦКОГО РАЙОНА РТ

Тема урока:

BATOBOE ABJUTA


Выполнила: учитель физики первой квалификационной категории: Николаева H.C.



ФОТОЗФФӨКТ-ЭТО

- 1. свечение металлов при пропускании по ним тока
- 2. нагрев вещества при его освещении
- 3. синтез глюкозы в растениях под действием солнечного света
- 4. выбивание электронов с поверхности металла при освещении его светом

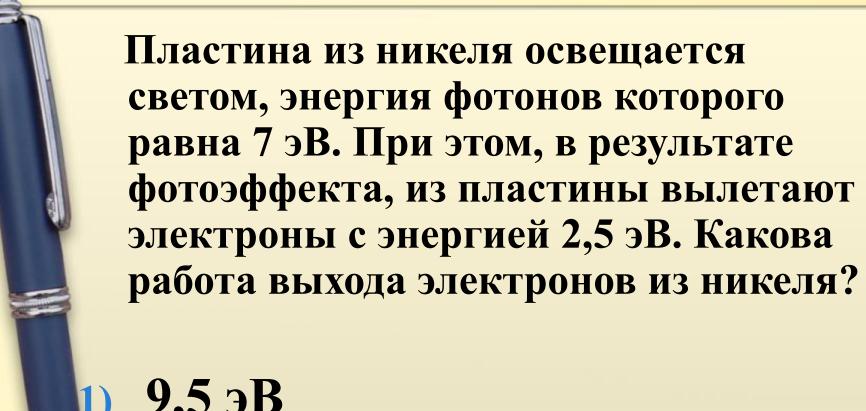
- А. Интенсивность падающего света
- Б. Частота падающего света
- В. Работа выхода электрона из металла
- 1) Только А
- 2) Только Б
- 3) БиВ
- 4) А, Б, В

- 1) Больше Е
- Меньше Е
- 3) Равна Е
 - Может быть больше или меньше Е при разных условиях

Чему равен импульс, переданный фотоном веществу, при его отражении в слу^{0°}е угла падения и при его поглощении?

А. в обоих случаях $\frac{h}{\lambda}$

Б. в первом случае $\frac{2h}{\lambda}$, во втором $\frac{h}{\lambda}$

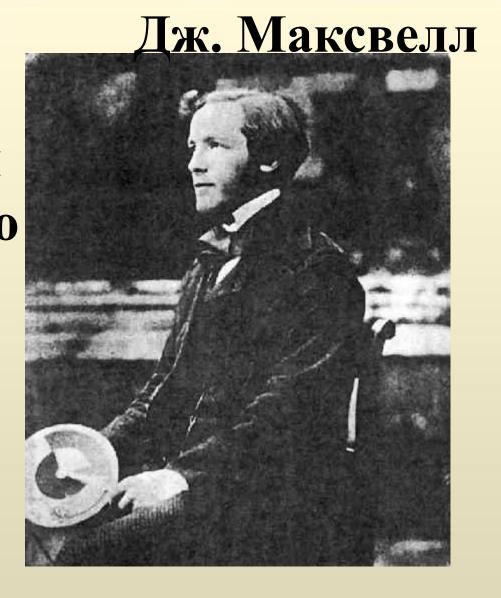

B. в первом случае $\frac{h}{\lambda}$, во втором $\frac{2h}{\lambda}$

Г. в обоих случая $\frac{2h}{\lambda}$

Чему равен импульс фотона с частотой υ?

A.
$$\mathbf{h} \cdot \mathbf{v} \cdot c^2$$

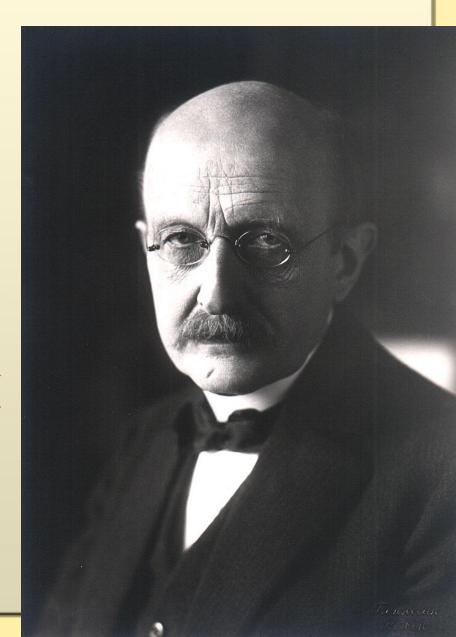
$$\Gamma$$
. $\frac{hv}{c}$


9,5 3B

7 3B

4,5 3B

2,5 3B

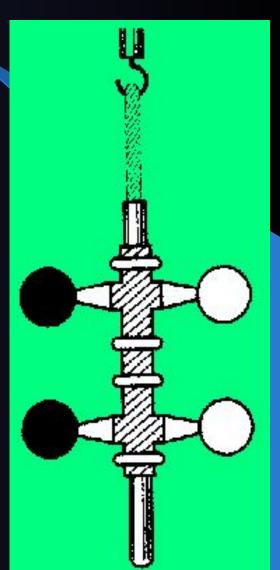

Дж. Максвелл считал, что свет – **3T0** волна

Макс Планк

Макс Планк доказал, что свет – это фотон

П. Н. Лебедев

П. Н. Лебедев доказал, что свет оказывает на тела давленье

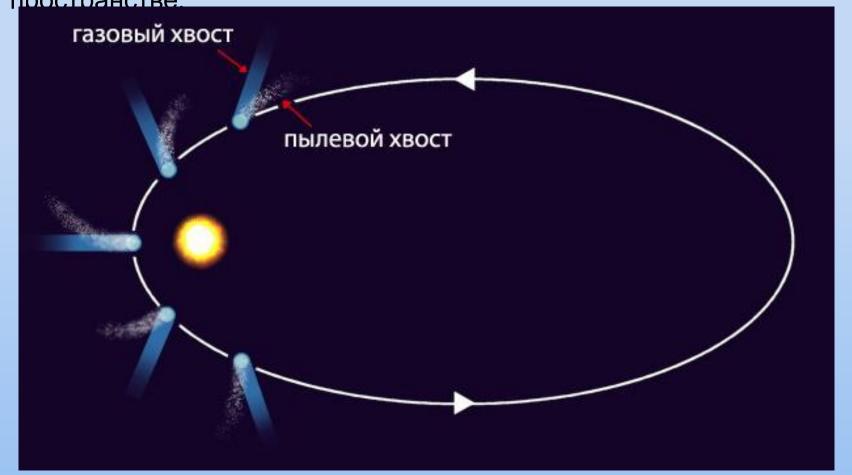


В 1873 г. Дж. Максвелл, исходя из представлений об электромагнитной магнитной природе света, пришел к выводу, что свет должен оказывать давление на препятствие благодаря действию силы Лоренца

- XVIIв. немецкий физик И.Кеплер для объяснения отклонения хвостов комет, пролетающих вблизи Солнца высказал гипотезу о механическом давлении света.
- 1890 г П.Н.Лебедев эмпирически доказал существование светового давления.
- 1907 -1910 гг. Лебедев эмпирически доказал существование давления света на газы

Давление света

Установка опыта П.Н. Лебедева 5см


1619 ГОДУ НЕМЕЦКИЙ УЧЕНЫЙ И. КЕПЛЕР ЗАМЕТИЛ, ЧТО ХВОСТ КОМЕТ ВСЕГДА НАПРАВЛЕН ОТ СОЛНЦА. ОН ВЫСКАЗАЛ ГИПОТЕЗУ О МЕХАНИЧЕСКОМ ДАВЛЕНИИ СВЕТА.

По мере приближения кометы к Солнцу ядро нагревается, и его вещества начинают испаряться. Вокруг ядра образуется газовая оболочка, а затем появляется длинный хвост.

Хвост кометы может вытягиваться на миллионы километров! Он всегда направлен в сторону от Солнца и состоит из газов и мелкой пыли. Силы, отталкивающие кометный хвост от Солнца- это световое давление. Когда комета удаляется от Солнца, её хвост и газовая оболочка постепенно исчезают.

Со временем под действием солнечного тепла многие кометы полностью разрушаются. Их частички рассеиваются в космическом пространстве.

Световое давление играет существенную роль в космических и внутриатомных процессах (стабильность звезд). Световое давление используют для удержания с помощью лазеров в воздухе малые частицы вещества.

Световое давление – результат падения на тело световых <u>квантов</u> и их последовательного отражения или поглощения

$$P_{\mathit{UMII}} = m_{\phi} \cdot c = \frac{n}{\lambda}$$

Способность света оказывать давление свидетельствует о том, что световые волны обладают импульсом.

C6

Монохроматический пучок параллельных лучей создается источником, который за время $\Delta t = 8\cdot 10^{-4}$ с излучает $N = 5\cdot 10^{14}$ фотонов. Фотоны падают по нормали на площадку S = 0.7 см 2 и создают давление $P = 1.5\cdot 10^{-5}$ Па. При этом 40% фотонов отражается, а 60% поглощается. Определите длину волны излучения.

Выражение для давления света:

$$P = P_{omp} + P_{noz\pi} = \frac{N_{omp} \Delta p_{omp} + N_{noz\pi} \Delta p_{noz\pi}}{S \Delta t} \,. \, (1)$$

(Формула (1) следует из $\vec{F} = \Delta \vec{p}/\Delta t$ и P = F/S.)

Формулы для изменения импульса фотона при отражении и поглощении лучей: $\Delta p_{omp} = 2\,p\,, \ \Delta p_{nozn} = p\;; \quad \text{число} \quad \text{отраженных} \quad \text{фотонов:} \quad N_{omp} = 0,4N\,, \quad \text{а}$ поглощенных: $N_{nozn} = 0,6N\,.$

Тогда выражение (1) принимает вид $P = \frac{1,4Np}{S\Delta t}$.

Выражение для импульса фотона: $p = \frac{h}{\lambda}$.

Выражение для длины волны излучения: $\lambda = \frac{1,4Nh}{PS\Delta t}$.

Otbet:
$$\lambda = \frac{1.4 \cdot 5 \cdot 10^{14} \cdot 6.6 \cdot 10^{-34}}{1.5 \cdot 10^{-5} \cdot 0.7 \cdot 10^{-4} \cdot 8 \cdot 10^{-4}} = 5.5 \cdot 10^{-7} \,\mathrm{m}.$$

Какова максимальная скорость электронов, выбиваемых из металлической пластины светом с длиной волны $\lambda = 3$ м, если кра 10^{-7} граница фотоэффекта = 540 нм?

Уравнение Эйнштейна для фотоэффекта:

$$hv = A_{\text{BMX}} \frac{mv^2}{2}$$

Формула, связывающая частоту и длину волны фотона:

$$\lambda = \frac{1}{2}$$
 (2)

Уравнение для красной границы фотоэффекта:

$$\frac{hc}{\lambda_{\rm kp}} = A_{\rm BMX} \tag{3}$$

Подставляя (2) и (3) в уравнение (1), получаем:

$$V = \sqrt{\frac{2hc(\frac{1}{\lambda} - \frac{1}{\lambda_{\rm KP}})}{m}}$$

Ответ: v = 800 км/c