

История открытия

Впервые хлор был получен в 1772 г. Шееле:

$$4HCI + MnO2 = CI2 + MnCI2 + 2H2O$$

- Однако Шееле предположил, что хлор представляет собой оксид соляной кислоты.
- И только Дэви удалось электролизом разложить поваренную соль на натрий и хлор.

Распространение в природе

лор активный

Самые большие запасы хлора содержатся в составе солей вод морей и океанов.

В природе встречаются 2 стабильных изотопа хлора: с массовым числом 35 и 37.

В природе он встречается только в виде соединений в составе минералов: галита NaCl, сильвина KCl, сильвинита KCl \cdot NaCl, бишофита $\mathrm{MgCl}_2 \cdot 6\mathrm{H2O}$, карналлита $\mathrm{KCl} \cdot \mathrm{MgCl}_2 \cdot 6\mathrm{H}_2\mathrm{O}$, каинита $\mathrm{KCl} \cdot \mathrm{MgSO}_4 \cdot 3\mathrm{H}_2\mathrm{O}$.

В организме человека и животных хлор содержится в основном в межклеточных жидкостях (в том числе в крови) и играет важную роль в регуляции осмотических процессов, а также в процессах, связанных с работой нервных клеток.

Изотоп	Относительная масса, а.е.м.	Период полураспада	Тип распада	Ядерный спин
³⁵ Cl	34.968852721	Стабилен	_	3/2
³⁶ Cl	35.9683069	301000 лет	β-распад в ³⁶ Ar	0
³⁷ Cl	36.96590262	Стабилен	_	3/2
³⁸ Cl	37.9680106	37,2 минуты	β-распад в ³⁸ Ar	2
³⁹ Cl	38.968009	55,6 минуты	β-распад в ³⁹ Ar	3/2
⁴⁰ Cl	39.97042	1,38 минуты	β-распад в ⁴⁰ Ar	2
⁴¹ Cl	40.9707	34 c	β-распад в ⁴¹ Ar	
⁴² Cl	41.9732	46,8 c	β-распад в ⁴² Ar	
⁴³ Cl	42.9742	3,3 c	β-распад в ⁴³ Ar	

Физические свойства

При н.у. хлор - ядовитый газ желтовато- зелёного цвета, с резким, удушающим запахом.

Растворитель	Растворимость г/100 г
Бензол	Растворим
Вода (0 °C)	1,48
Вода (80 °C)	0,22
Хлороформ	Хорошо растворим

По электропроводности жидкий хлор занимает место среди самых сильных изоляторов: он проводит ток почти в миллиард раз хуже, чем дистиллированная вода. Скорость звука в хлоре примерно в полтора раза меньше, чем в воздухе.

Свойство	Значение
Температура кипения	-34 °C
Температура плавления	-101 °C
Температура разложения (диссоциации на атомы)	~1400 °C
Плотность (газ, н.у.)	3,214 г/л
Сродство к электрону атома	3,65 aB
Первая энергия ионизации	12,97 эВ
Теплоемкость (298 К, газ)	34,94 (Дж/моль⋅К)
Критическая температура	144 °C
Критическое давление	76 атм
Стандартная энтальпия образования (298 К, газ)	0 (кДж/моль)
Стандартная энтропия образования (298 К, газ)	222,9 (Дж/моль⋅К)
Энтальпия плавления	6,406 (кДж/моль)
Энтальпия кипения	20,41 (кДж/моль)

Химические свойства

В колбу с хлором капнули несколько капель концентрированного раствора аммиака. В результате взаимодействия хлора с аммиаком образуется NCI3 (хлористый азот, взрывчатая желтая маслянистая жидкость) по уравнению:

В условиям вашей опый жизори в Сый азот моментально разлагается, чем и объясняется треск и маленькие вспышки в колбе

Применения хлора

- В производстве пластикатов, синтетического каучука и др.
- Для отбеливания в текстильной и бумажной промышленности
- Производство веществ, убивающих вредных для посевов насекомых, но безопасные для растений.
- Использовался как боевое отравляющее вещество (слезоточивый газ), а так же для производства других боевых отравляющих веществ: иприт, фосген.
- Для обеззараживания воды «хлорирования».
- В пищевой промышленности зарегистрирован в качестве пищевой добавки **E925**.
- В химическом производстве ядов, лекарств, удобрений.
- В металлургии для производства чистых металлов: титана, олова, тантала, ниобия.
- Как индикатор солнечных нейтрино в хлор-аргонных детекторах.

- Хлор токсичный удушливый газ, при попадании в лёгкие вызывает ожог лёгочной ткани, удушье.
- Раздражающее действие на дыхательные пути оказывает при концентрации в воздухе около 0,006 мг/л (т.е. в два раза выше порога восприятия запаха хлора).
- Хлор был одним из первых химических отравляющих веществ, использованных Германией в Первую мировую войну.
- При работе с хлором следует пользоваться защитной спецодеждой, противогазом, перчатками. Н
- а короткое время защитить органы дыхания от попадания в них хлора можно тряпичной повязкой, смоченной раствором сульфита натрия Na₂SO₃ или тиосульфата натрия Na₂S₂O₃.