

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ЭКСПЛУАТАЦИИ АЭС

Антонова А.М., доцент Томский политехнический университет кафедра Атомных и тепловых электростанций

"У нас нет времени экспериментировать с призрачными источниками энергии, цивилизация в опасности, и нам нужно сейчас использовать ядерную энергию — единственный безопасный и доступный источник энергии, или страдать от боли, которую уже в скором времени нам причинит оскорбленная планета".

Профессор Джеймс Лавлок, основатель международного «зеленого» движения, 2004 г.

2

Экологические проблемы энергетики

• не существует способов получения электроэнергии, не сопряженных с риском возможного вреда

Какая электростанция характеризуется большим удельным выбросом радиоактивных веществ в окружающую среду – атомная или угольная?»

- на единицу произведенной электроэнергии больший в 5–10 раз выброс радиоактивных веществ в окружающую среду дает угольная станция
- В 1 т золы ТЭС содержится до 100 г радиоактивных веществ торий, два долгоживущих изотопа урана, продукты их распада (радий, радон и полоний), а также долгоживущий радиоактивный изотоп калия калий-40

Дымовые выбросы ТЭС в атмосферу содержат

При зольности угля **10** % за год **ТЭС** мощностью **1 ГВт** с коэффициентом очистки выбросов 0,975:

- ⁴⁰K **4,0** ГБк, ²³⁸U и ²²⁶Ra по **1,5** ГБк, ²¹⁰Pb и ²¹⁰Po по **5,0** ГБк, ²³²Th **1,5** ГБк;
- в действительности зольность угля колеблется от 10 до 45 % (в зависимости от месторождения), поэтому **ТЭС** дают более высокое значение выбросов ЕРН

- Угли Кузбасса имеют, как правило, небольшие концентрации урана при относительно высоких концентрациях тория
- на отдельных предприятиях Кемеровской области, например на Итатском угольном разрезе, содержание ЕРН достигает 1000 Бк/кг угля и более

Индивидуальная максимальная ожидаемая доза, м3в/год от выбросов в атмосферу электростанций мощностью 1000 МВт (эл)

Орган	ТЭС	АЭС с ВВЭР	Контрольные уровни
Все тело	0,019	0,018	0,05
Кости	0,182	0,027	0,15
Легкие	0,019	0,012	0,15
Щитовидная железа	0,019	0,038	0,15
Почки	0,034	0,013	0,15
Печень	0,024	0,013	0,15
Селезенка	0,027	0,011	0,15

Радиация как источник производственного **** травматизма и смертности в промышленности

- По данным Института биофизики за 43 года (1950-1992 г.) зарегистрировано 132 случая нештатных радиационных ситуаций, в которые было вовлечено 875 человек
- За 43 года (с 1958 по 2000 г.) на угольных шахтах бывшего СССР пострадали 2117 475 человек, из которых 31 988 стали инвалидами труда и 28 792 погибли

- От прочих несчастных случаев в быту и на производстве, не говоря о транспортных авариях, за тот же период погибли миллионы людей
- За 12 месяцев 2006 года в стране зарегистрировано 229 140 ДТП, в которых погибли 32 724 и получили ранения 285 362 человека

НЕРАДИАЦИОННЫЕ ТОКСИЧНЫЕ ВЫБРОСЫ ТЭС

- двуокись углерода;
- токсичные газы (оксиды углерода, серы, азота и ванадия);
- канцерогены (бензапирен и формальдегид);
- пары соляной и плавиковой кислот;
- токсичные металлы (мышьяк, кадмий, ртуть, свинец, таллий, хром, натрий, никель, ванадий, бор, медь, железо, марганец, молибден, селен, цинк, сурьма, кобальт, бериллий)

Годовые выбросы от угольной ТЭС мощностью 1000 МВт

- 7 млн.т в год углекислого газа (19 тыс. т в сутки);
- 50 -100 тыс. т в год окислов серы;
- 25 тыс. т в год окислов азота;
- 20 тыс. т в год твердых частиц;
- 400 т в год токсичных металлов:
- суточный выброс золы в атмосферу составляет 35 55 т, и при высоте трубы 150–200 м радиус загрязненной территории равен примерно 50 км

Проблема парниковых газов и дефицита кислорода

Выброс углекислого газа

- При сжигании 1 тонны угля (условного топлива)
 -2,76 т углекислого газа.
- При сжигании 1 тонны природного газа 1,62 т углекислого газа.
- Всего **7 млн. т** в год **углекислого газа** на 1 ГВт в год (19 тыс. т в сутки)

Проблема парниковых газов и дефицита кислорода

Потребление <u>кислорода</u>

- При сжигании 1 тонны угля (условного топлива) -2,3 т кислорода
- при сжигании 1 тонны природного газа 2,35 т кислорода
- Ежегодное потребление кислорода ТЭС России составляет более 500 млн.т

Флора может еще справляться с поглощением СО₂ антропогенного происхождения, но уже не может обеспечивать необходимого воспроизводства атмосферного кислорода

Сравнительная оценка общего ущерба здоровью от ЯТЦ и УТЦ на 1 ГВт-год

Вид ущерба	ЯТЦ	УТЦ
Число случаев преждевременной	1	300
смерти		(20 – 600)
Общее сокращение	20	10000
продолжительности жизни, чел·год		
Общие потери трудоспособности, чел·год	10	7000

По шкале потерь здоровья, разработанной учёными Канады, на 1 ГВт в год

Сопоставление способов получения электроэнергии

Уголь и нефть	100		
Ветер и тепл.	20		
энергия Гидроэнергия	10		
АЭС	1		

(относительные единицы)

• АЭС при их нормальной эксплуатации в экологическом отношении безопаснее тепловых электростанций на угле и других источников электроэнергии

СОПОСТАВЛЕНИЕ РИСКА ОТ РАДИАЦИОННОГО ВОЗДЕЙСТВИЯ АЭС И ДРУГИХ ФАКТОРОВ

Источники излучения	Доза, мЗв/год	Доля суммарной дозы, %
Естественный фон	1,10	44,7
Медицинская рентгенодиагностическая аппаратура	0,72	29,3
Строительные материалы	0,60	24,4
Глобальные выпадения	0,02	0,8
Часы со светосоставом	0,01	0,4
Авиационный транспорт	0,005	0,2
Телевизоры	0,002	0,1
АЭС	10 ⁻⁵	0,05
Итого	≈ 2,46	100

Уровни активности некоторых жидкостей

Жидкость	Активность, Бк/л	
Типичные сбросные воды АЭС	0,037 — 0,37	
Водопроводная вода	0,74	
Речная вода	0,37 - 3,7	

Сопоставление риска от радиационного воздействия с другими опасностями

• В химических производствах России нередки случаи, когда загрязнение атмосферы вредными веществами систематически превышает ПДК в десятки раз

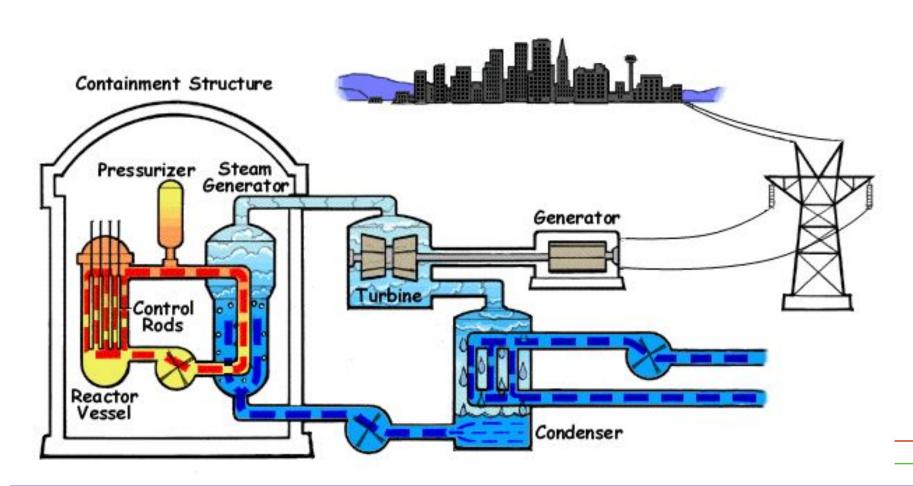
Сравнение методов и уровней практической реализации защиты здоровья человека и охраны окружающей среды от радиоактивных и химических загрязнителей показало их серьезные отличия и несбалансированность

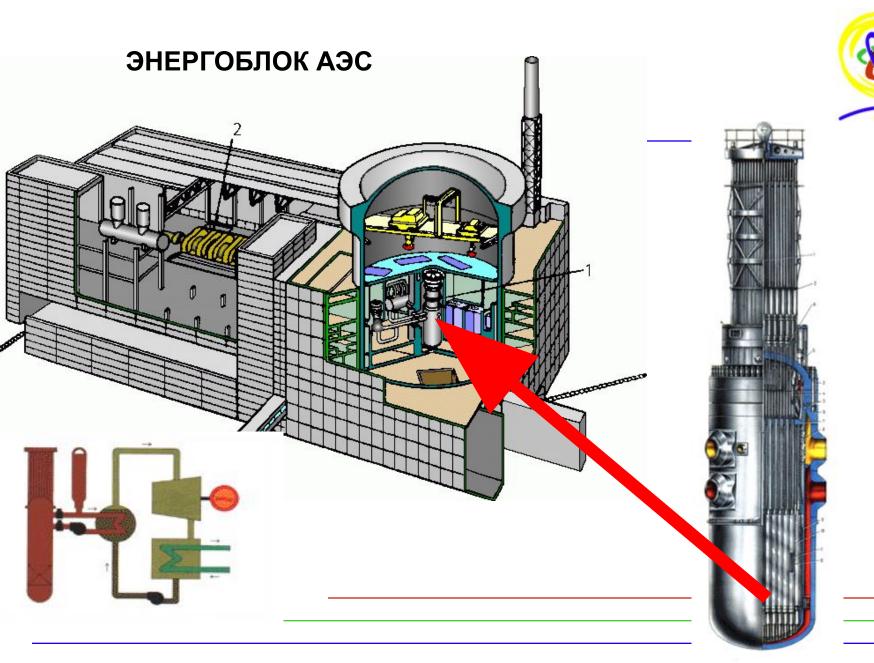
Это касается всех элементов регулирования

- подходов к нормированию;
- методик определения допустимых выбросов и сбросов;
- возможностей мониторинга;
- отношения к соблюдению регламентации

• Я убежден, что ядерная энергетика необходима человечеству и должна развиваться, но только в условиях практически полной безопасности. Академик А.Д.Сахаров

Требование безаварийности

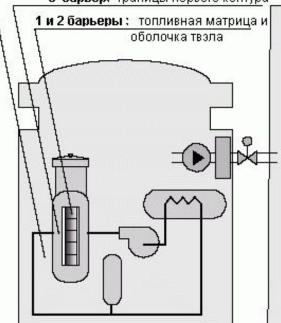

Новые конструкции реакторов имеют:


- Системы аварийной защиты и локализации
- Обеспечение нерасплавления активной зоны за счет использования внутренне присущих физических свойств конструкции активной зоны и материалов

24

Принципиальное устройство двухконтурной АЭС

Барьеры, предотвращающие выход продуктов деления в окружающую среду

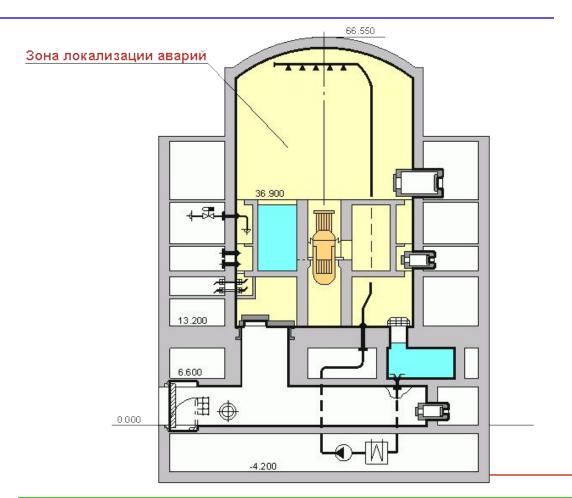


ГЛАВНЫЙ ЦИРКУЛЯЦИОННЫЙ КОНТУР

Предотвращение выхода продуктов деления под защитную герметичную оболочку

4 барьер: защитная оболочка

3 барьер: границы первого контура 1 и 2 барьеры: топливная матрица и



CUCTEMA ЗАЩИТНЫХ ГЕРМЕТИЧНЫХ ОГРАЖДЕНИЙ

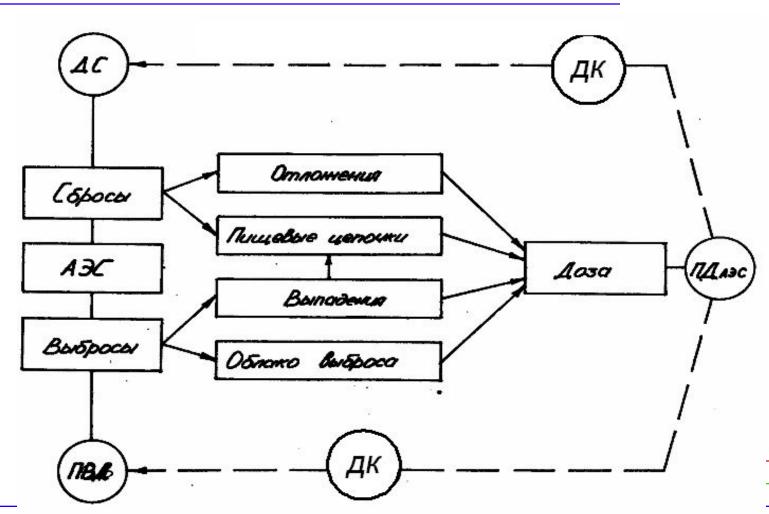
Предотвращение выхода продуктов деления в окружающую среду

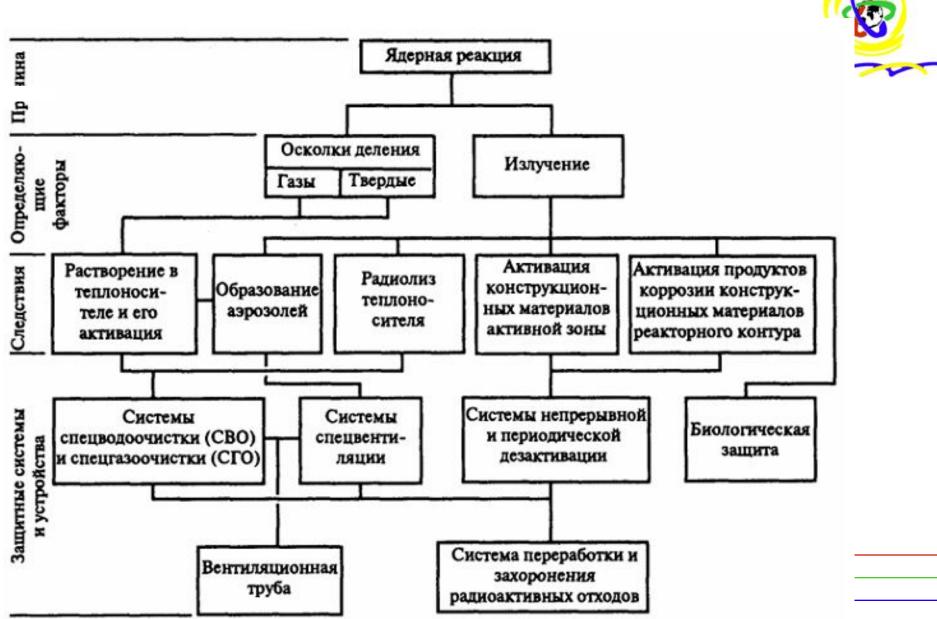
Локализация аварий

Концепция экологической безопасности АЭС

разрабатывается до реального проектирования АЭС

- оценка состояния окружающей среды в районе предполагаемого строительства АЭС
- уровень допустимых воздействий на природное окружение
- в рамках Технико-экономического обоснования (ТЭО) Оценка воздействий АЭС на окружающую среду
- на стадии проекта АЭС *Обоснование экологической безопасности*
- соответствие технических решений требованиям Концепции охраны окружающей среды в регионе
- Независимая экологическая экспертиза


Малое радиационное воздействие нормально работающей АЭС на окружающую среду


- **Дозовую нагрузку** на индивидуума из населения при нормальной работе АЭС **измерить нельзя**
- это обусловлено тем, что санитарногигиеническое законодательство (НРБ и СП АС) установило дозовую квоту АЭС в размере 5 % ПД – 0,25 мЗв/год, что равно 1/4 - 1/5 естественного фона
- В проекте станции разрабатываются соответствующие системы и оборудование для выполнения норм

Структурная схема нормирования выбросов и сбросов АЭС

Схема образования радиоактивных отходов

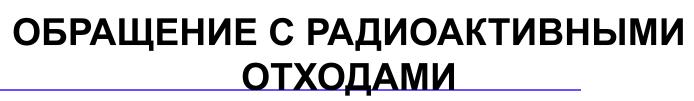
Нерадиационные факторы воздействия АЭС на окружающую среду

- тепловое
- химическое
- шумовое
- загрязнения, связанные с жизнедеятельностью комплекса

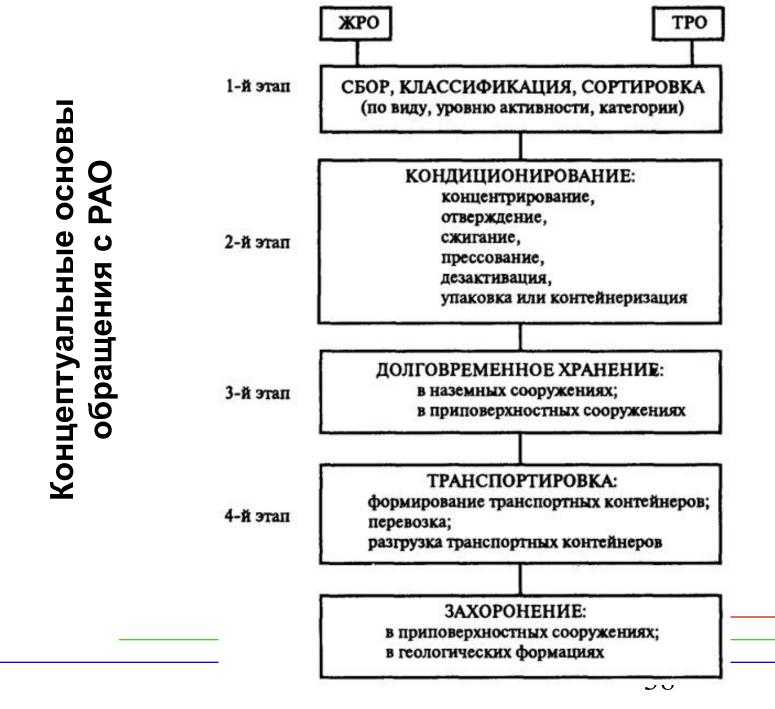
ОСНОВНЫЕ ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ЭКСПЛУАТАЦИИ АЭС

- Вывод из эксплуатации после исчерпания ресурса
- Обращение с радиоактивными отходами
- Обращение с отработавшим ядерным топливом

ДЕМОНТАЖ АЭС по окончании нормальной эксплуатации



Демонтаж АЭС является сложным и экологически опасным процессом



Демонтаж

- В 2006 году был завершен вывод из эксплуатации на площадке АЭС "Биг-Рок Пойнт" в США, и эта площадка вернулась к состоянию «зеленой лужайки»
- По состоянию на конец 2006 года 9 АЭС в мире были полностью выведены из эксплуатации, их площадки переданы для использования без ограничений
- 17 АЭС частично демонтированы и подвергнуты безопасной консервации
- 30 АЭС демонтируется перед конечной передачей площадки в пользование
- 30 находятся в стадии минимального демонтажа перед долгосрочной консервацией

Обращение с жидкими радиоактивными отходами

- хранение в специальных емкостях-хранилищах
- нахождение в открытых водоёмах и специальных бассейнах
- подземное захоронение в пластах-коллекторах
- сброс на специально выделенных участках морей и океанов

Обращение с твёрдыми радиоактивными отходами

- хранение в металлических ёмкостях
- плавление
- цементирование
- битумирование
- прессование
- сжигание
- остекловывание

Так выглядят низкоактивные радиоактивные отходы после специальной обработки - остекловывания

Так выглядят низкоактивные радиоактивные отходы после специальной обработки - остекловывания

• Кондиционированные РАО, срок радиационной опасности которых не превышает срока действия инженерных барьеров (оценивается в 300-500 лет), могут захораниваться в приповерхностных или слабозаглубленных могильниках

ОТРАБОТАВШЕЕ ЯДЕРНОЕ ТОПЛИВО

• Это сырьевой ресурс, возможно, ресурс не настоящего, а будущего

Сложность проблем обращения с ОЯТ

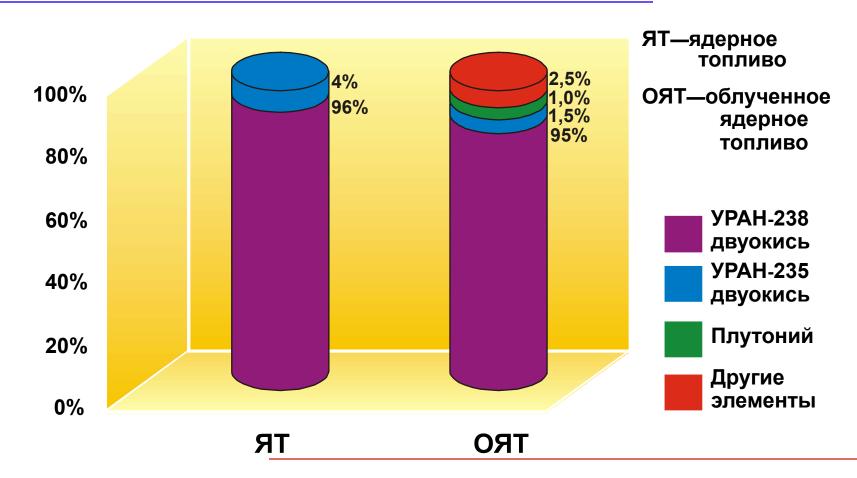
- высокая активность (млн. Ku/т)
- значительное тепловыделение после выгрузки из реактора
- наличие в составе ОЯТ значительного количества делящихся веществ

Мощность дозы от ОЯТ

- заметно уменьшается со временем
- через 3 года она составляет примерно 1/600 часть от мощности дозы только что выгруженного топлива

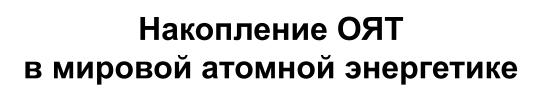
Активность ОЯТ

- вначале определяется в основном короткоживущими осколками деления
- после нескольких сотен лет хранения актинидами


Количество радионуклидов в ОЯТ

Получение 1 ГВт-год электроэнергии на АЭС с реактором ВВЭР сопровождается наработкой

- 150-200 кг Pu
- 20-30 кг младших актиноидов (Np, Am, Cm)
- за 40 лет работы блока мощностью 1 ГВт их будет произведено 6-8 и 0,8-1,2 т соответственно



Изменение состава ОЯТ после облучения в реакторе

• Количество отработавшего топлива всех реакторов в мире составляет около 10 500 т в год

Год	Количество образовав- шегося ОЯТ	Количество делящихся материалов в ОЯТ	
		Плутоний (Уран-235 (
2000	200 000	1 500	2 200
2010	300 000	2 300	3 450
2025	550 000	4 000	6 000
2050	800 000	6 000	9 000

Накопление ОЯТ в Российской Федерации

Год	Количество образовавшегося	Количество делящихся материалов в ОЯТ	
	(ннот) ТРО	Плутоний (Уран-235 (
2000	15 000	90	140
2010	23 000	140	215
2025	33 000	240	350
2050	50 000	500	650

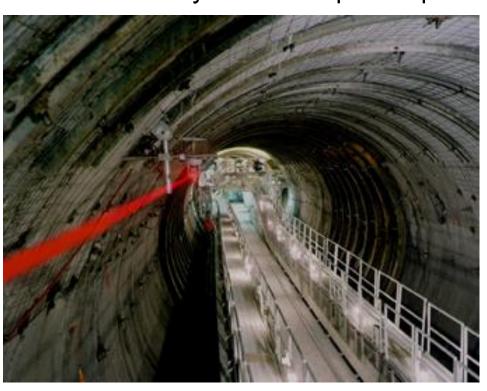
Имеется две различные стратегии обращения с отработавшим ядерным топливом

- ОЯТ перерабатывается (или хранится для будущей переработки) с целью извлечения урана и плутония для нового смешанного оксидного (МОХ) топлива
- ОЯТ считается отходами и хранится до захоронения

Реализация стратегий обращения с ОЯТ

- строительство централизованного хранилища
- переход к сухому складированию ОЯТ вблизи АЭС
- развитие технологий переработки и трансмутации ОЯТ

Стратегия складирования ОЯТ


- В настоящее время принята в США
- непосредственное складирование ОЯТ в металлических контейнерах в глубоких геологических формациях
- Основное национальное хранилище ОЯТ США в Юкка-Маунтин (Yucca-Mountain)

Проект хранилища РАО и ОЯТ в глубине горы Юкка (США)

Хранилище рассчитано на 10 тысяч лет

отходы заложены в стальные цилиндрические кассеты

Емкость хранилища 77 тыс. тонн РАО

- Действующим геологическим хранилищем является экспериментальная установка по изоляции отходов в США
- С 1999 года она принимает долгоживущие трансурановые отходы, образующиеся в результате проведения научных исследований и производства ядерного оружия
- не принимает отходы с гражданских АЭС

- Самые развитые программы создания хранилищ финская, шведская и американская
- однако ни одна из них не обеспечит ввода в эксплуатацию хранилища ранее 2020 года

Франция

Новое законодательство в отношении обращения с отработавшим топливом и захоронения отходов определяет

- переработку ОЯТ и рециклирование пригодных к использованию материалов
- захоронение в глубинных геологических формациях является эталонным решением для долгоживущих радиоактивных отходов высокого уровня активности

Великобритания

- В 2006 году Комитет по обращению с радиоактивными отходами пришел к выводу, что наилучшим вариантом является
- хранение в глубинных геологических формациях с обеспечением "надежного промежуточного хранения" до выбора площадки для хранилища

Швеция

- метод окончательного захоронения герметичных медных контейнеров с топливом на глубине приблизительно 500 метров
- Строительство в Оскаршамне завода по герметизации отходов

Основные этапы обращения с ядерным топливом в **РОССИИ**

Так выглядит современное хранилище РАО и ОЯТ

- В России новым направлением обращения с РАО является переход к контейнерному хранению
- используются металлобетонные контейнеры

Контейнерное хранение ОЯТ

СТРАТЕГИЯ ПЕРЕРАБОТКИ ОЯТ

- Великобритания, Россия, Франция, Япония в том или ином виде осуществляют переработку ОЯТ
- выделение урана, плутония
- изготовление из переработанных материалов топливных элементов, их повторное использование в легководных реакторах
- Наиболее эффективная структура обращения с ОЯТ и РАО - во Франции (многокомпонентная ядерная энергетика, включающая легководные реакторы, быстрые реакторы - "дожигатели", комплексы переработки ОЯТ и РАО

Ядерная трансмутация элементов

- Для трансмутации можно использовать практически любое ядерное излучение, однако нейтроны наиболее эффективны
- На сегодняшний день разработаны несколько вариантов концепции трансмутации ОЯТ
- во всех концепциях существенная роль отводится быстрым подкритическим системам, т.к. невозможно построить устойчиво работающий критический реактор с топливом, состоящим более чем на 15 – 20 % из младших актиноидов

Реактор-выжигатель

- Быстрая подкритическая система для утилизации долгоживущих компонентов ОЯТ, в первую очередь, актиноидов: изотопов америция, кюрия, а также нептуния (доля запаздывающих нейтронов в спектре их деления незначительна)
- управляются сильноточными протонными ускорителями

Кроме актиноидов подкритические системы могут уничтожать продукты деления ⁹⁹Тс и ¹²⁹I

Пульт управления завода радиохимической переработки ОЯТ

69

ЭКОЛОГИЧЕСКИЙ МОНИТОРИНГ

объекты мониторинга АЭС:

- окружающая среда в пределах ССЗ и зоны наблюдения (атмосферный воздух, поверхностные и подземные воды, почва)
- источники поступления загрязняющих веществ в результате основной деятельности АЭС
- размещение опасных нерадиоактивных отходов

Задачи мониторинга

- получить комплексную информацию о концентрациях вредных веществ в компонентах экосистемы
- сопоставить результаты измерений с нормативными показателями
- оценить состояние экосистемы и возможные последствия техногенных воздействий
- использовать результаты измерений для совершенствования расчетного моделирования процессов в экосистемах и оценок последствий техногенного воздействия
- использовать результаты анализа для разработки «обратных связей» и управления состоянием системы «АЭС + окружающая среда»

Результаты мониторинга

• современные фактические дозы облучения населения от функционирования атомной энергетики находятся значительно ниже научно подтвержденных порогов обнаружения вредных эффектов

 для населения радиационные риски от использования ядерной энергии в сотни раз ниже рисков от техногенных загрязнений химически вредными веществами

СПАСИБО ЗА ВНИМАНИЕ!

Антонова Александра Михайловна anton@tpu.ru

• Радиофобия — нервно-соматические психические расстройства, иногда трудно поддающиеся лечению, выражающиеся в необоснованной боязни различных источников облучения

• В 1961 году, после взрыва сверхбомбы на Новой Земле, загрязнение Северного полушария превосходило Чернобыль, но об этом не оповещали, и для большинства населения все прошло незамеченным

SL-27 10/19/05

• Неподтверждена гипотеза о том, что воздействие малых доз облучения в течение длительного времени приводит к тем же последствиям, что и больших доз в течение короткого

- Факты свидетельствуют, что миллиард лет жизни при постоянном естественном облучении выработал у живых организмов устойчивость к действию радиации
- Более того, нельзя исключить, что проникающее излучение необходимо для нормального функционирования организмов

 Цены спот на уран, стимулируемые отчасти возобновлением интереса к ядерной энергетике, продолжали расти в 2006 году, достигнув 72 долл. за фунт U₃O₈ (урановый концентрат) – 158 долл. за кг