МОУ Тверская гимназия № 10

Разработка урока по физике для 10 класса «Силы взаимодействия молекул»

Выполнила: Никитышева Ольга

Александровна

Должность: учитель физики

Цель урока:

усвоить характерные особенности межмолекулярного взаимодействия.

Задачи урока:

А) Образовательные:

-Расширить и уточнить знания о взаимодействии молекул; показать, что взаимодействие является неотъемлемым свойством материальных объектов (атомов, молекул).

Б) Воспитательные:

-создать на уроке атмосферу сотрудничества, взаимопомощи при организации совместной деятельности учащихся.

В) Развивающие:

- формирование надпредметных компетентностей.

Повторение материала 7 класса

Основные положения МКТ

Частицы вещества - атомы, молекулы и ионы.

Представления античных атомистов выглядят сегодня достаточно наивными, но именно эти представления стали отправной точкой в создании одного из современных разделов физики - молекулярно-кинетической теории (МКТ).

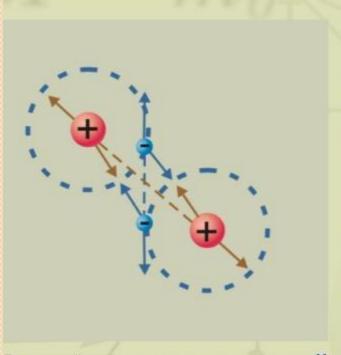
Молекулярно-кинетическая теория занимается изучением свойств веществ, основываясь при этом на представлениях о частицах вещества.

МКТ базируется на трех основных положениях:

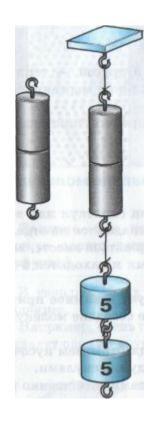
- Все вещества состоят из частиц молекул, атомов и ионов.
- Эти частицы вещества беспрерывно и беспорядочно движутся.
- Частицы вещества взаимодействуют друг с другом силами, имеющими электромагнитную природу.

Первое положение о том, что все вещества состоят из мельчайших частиц

Об атомах и молекулах


Атомом называется наименьшая частица данного химического элемента. Каждому химическому элементу соответствуют вполне определенные атомы - носители свойств данного элемента.

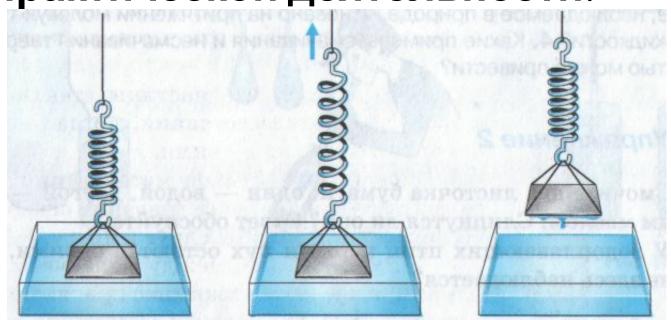
Атом состоит из положительно заряженного ядра и отрицательно заряженных электронов, движущихся в электрическом поле ядра. Молекулы состоят из нескольких атомов. Как молекулы, так и атомы электронейтральны.


Ионы же - заряженные частицы вещества, это атомы или молекулы с избытком или недостатком электронов. Второе положение о том, что между частицами вещества существует взаимное притяжение и отталкивание.

Опыт с цилиндрами

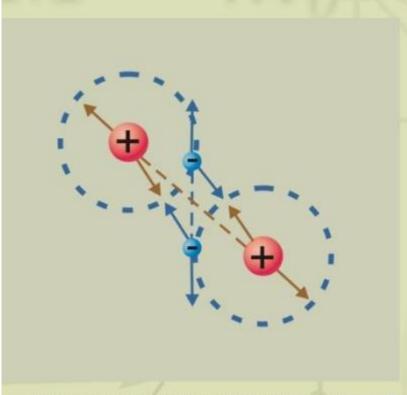
Взаимодействие молекул

Молекулы вещества постоянно взаимодействуют друг с другом. Силы взаимодействия имеют сложную электромагнитную природу и сводятся к двум типам: притяжению и отталкиванию. Эти силы проявляются на расстояниях, сравнимых с размерами молекул. На рисунке с помощью стрелок показано, что ядра атомов, внутри которых находятся положительно заряженные протоны, отталкиваются друг от друга, так же ведут себя и отрицательно заряженные электроны. А вот между ядрами и электронами действуют силы притяжения.



Взаимодействие заряженных частиц в веществе.

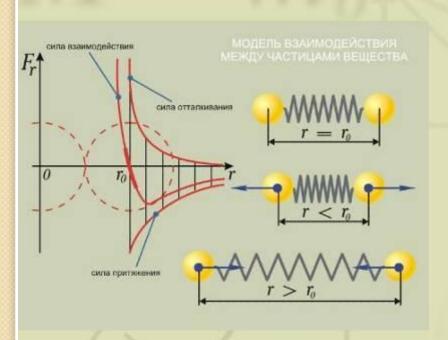
Ответьте на вопросы:


- - Почему возникает это явление?
- Как можно его наблюдать?

 - Где оно используется в практической деятельности?

Природа сил межмолекулярного (межатомного) взаимодействия

Взаимодействие молекул


взаимодействуют друг с другом. Силы взаимодействия имеют сложную электромагнитную природу и сводятся к двум типам: притяжению и отталкиванию. Эти силы проявляются на расстояниях, сравнимых с размерами молекул. На рисунке с помощью стрелок показано, что ядра атомов, внутри которых находятся положительно заряженные протоны, отталкиваются друг от друга, так же ведут себя и отрицательно заряженные электроны. А вот между ядрами и электронами действуют силы притяжения.

Молекулы вещества постоянно

Взаимодействие заряженных частиц в веществе.

Зависимость межмолекулярных сил от расстояния между молекулами

Сила взаимодействия частиц

Сила взаимодействия частиц определяется суммой сил притяжения и отталкивания и зависит от расстояния между частицами.

На определенном расстоянии силы притяжения и отталкивания компенсируют друг друга.

Именно это и есть среднее расстояние между частицами вещества.

При увеличении расстояний между частицами вещества проявляются силы притяжения, на малых расстояниях преобладают силы отталкивания.

Зависимость силы взаимодействия между молекулами от расстояния между ними.

Выполните задание на карточке

- 1. Укажите на осях графика необходимые параметры для того, чтобы можно было рассмотреть зависимость межмолекулярных сил от расстояния;
- 2. Выделить на оси расстояний точки, в которых силы взаимодействия молекул равны нулю, отталкиваются или притягиваются;
- 3. Сравнить силы межмолекулярного взаимодействия по величине в двух указанных точках.

Выводы

- a) Взаимодействие между молекулами проявляется одновременно и в проявлении и в отталкивании (силы притяжения и силы отталкивания не одинаково зависят от изменения расстояния между частицами)
- 6) Изучение явлений взаимодействия в 7 классе позволило описать и объяснить некоторые явления природы и наблюдаемые факты;
- в) углубление же знаний о взаимодействии выделение сил взаимодействия, описание характера их изменения расширяет область объяснения явлений и позволяет даже

<u>Домашнее задание</u>

- прочитать ∫ 59 и на основе установленной зависимости **F** от **r** объяснить существование веществ в различных агрегатных состояниях при разных температурах.
 - повторить материал о трёх состояниях вещества из курсов физики и химии.
 - - и (смотрите следующий слайд)

Перед вами проблема: предложить опытное обоснование положения о том, что частицы движутся хаотически.

Объяснение броуновского движения

Молекулярно-кинетическая теория броуновского движения была создана А. Эйнштейном в 1905 году.

Согласно этой теории, молекулы вещества передают ей часть своего <u>импульса</u>. Беспорядочность перемещения частиц объясняется случайными соударениями частиц с молекулами вещества.

Импульсы, получаемые частицей справа и слева, неодинаковы, поэтому отличная от нуля результирующая сила вызывает изменение движения частицы.

Спасибо за внимание