

Ученица 11 класса Горобец Любовь

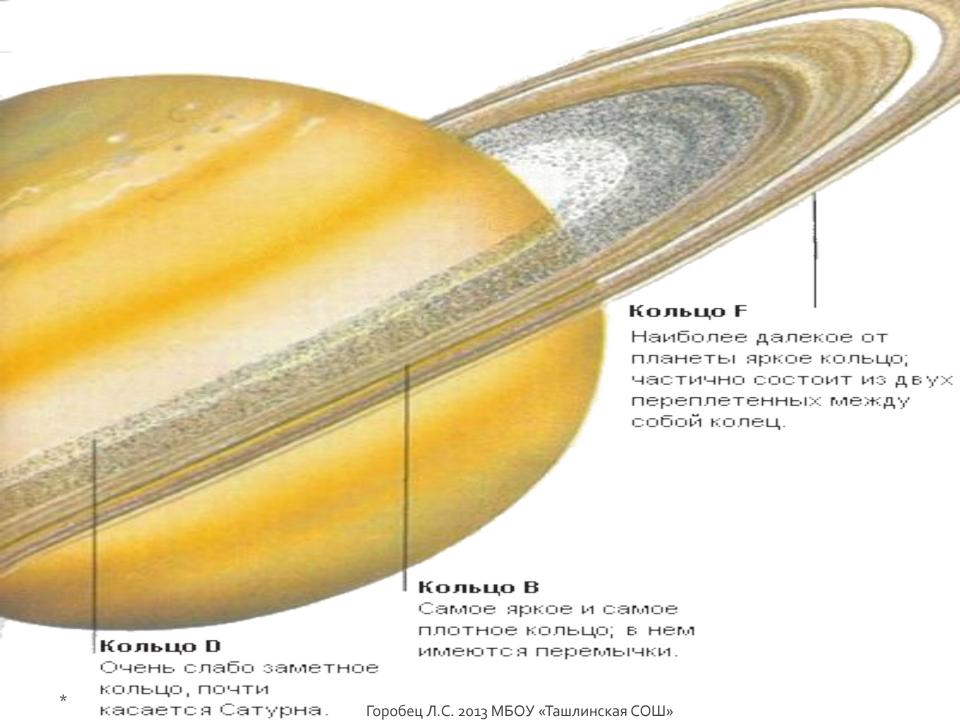
Юпитер

Юпитер — самая большая планета Солнечной системы. Его экваториальный радиус равен 71,4 тыс. км, что в 11,2 раза превышает радиус Земли.

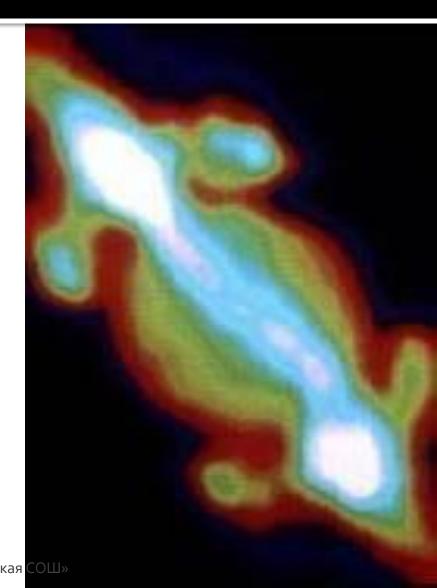
Масса Юпитера более чем в 2 раза превышает суммарную массу всех остальных планет солнечной системы, в 318 раз — массу Земли и всего в 1000 раз меньше массы Солнца. Если бы Юпитер был примерно в 70 раз массивнее, он мог бы стать звездой. Плотность Юпитера примерно равна плотности Солнца и значительно уступает плотности Земли.

Гигантская планета состоит преимущественно из газа и не имеет привычной нам твёрдой поверхности.

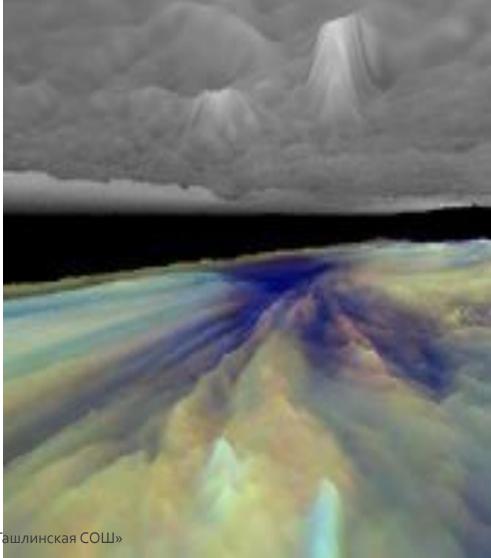
Спутник Ио


На рисунке изображен самый внутренний из галилеевских спутников Юпитера, Ио, на фоне газовой планеты-гиганта. Слева от Ио темное пятно, это тень спутника. В том месте на поверхности Юпитера, куда падает тень спутника, можно наблюдать солнечное затмение. С планеты Земля можно увидеть аналогичные прохождения по диску планеты-гиганта и других больших лун Юпитера. В течение следующих нескольких месяцев можно будет также наблюдать прохождения галилеевских спутников друг перед другом, т.к. их орбиты будут видны для земных наблюдателей практически с ребра. Это контрастное изображение в истинном цвете было получено космическим аппаратом Кассини при его пролете Юпитера по пути к Сатурну, которого он ДОСТИГ В 2004 ГОДУ.

Возникновение колец



Как объяснить возникновение колец у Юпитера? Кольца у Юпитера были открыты в 1979 году во время прохождения мимо планеты космического аппарата Вояджер-1, однако их происхождение оставалось загадкой. Позднее космическим аппаратом Галилей, который находился на орбите вокруг Юпитера с 1995 по 2003 годы, были получены данные о том, что эти кольца возникли в результате столкновения метеорных тел с небольшими спутниками Юпитера. Например, небольшое метеорное тело, ударившись в крошечную Адрастею, вонзится в нее и испарится, в результате чего большие количества грязи и пыли будут выброшены на орбиту вокруг Юпитера. На рисунке показано затмение Солнца Юпитером, так, как оно наблюдалось с космического аппарата Галилей. Маленькие пылевые частицы в высоких слоях атмосферы Юпитера, а также частицы пыли, которые входят в состав колец, видны в отраженном солнечном свете.


Юпитер в радиолучах

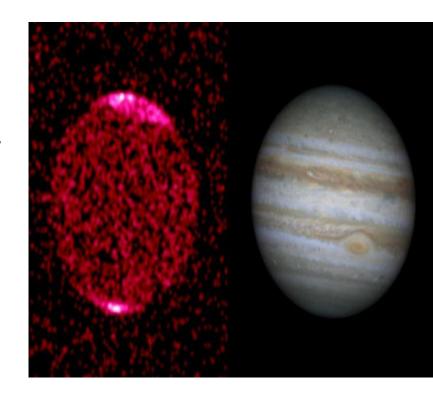
Этот вид планеты Юпитер в радиолучах довольно необычен. Радиоизображение газового гиганта построено на основе данных, полученных с помощью Очень Большого Массива радиотелескопов возле Сокорро (штат Нью Мексико). Действительно, здесь нет и намека на яркую круглую планету с полосатым облачным слоем, выставляющую напоказ Большое Красное Пятно. Это радиоизображение в условных цветах получено благодаря излучению электронов в мощном магнитном поле Юпитера. Область радиоизлучения окружает Юпитер и распространяется далеко за пределы его облачного слоя, ее размеры более чем в два раза превышают видимый радиус планеты. Эта область напоминает увеличенную версию радиационного пояса Ван-Аллена вокруг Земли. Радиационный пояс Юпитера светит в радиолучах, но не виден в оптической и ИКобласти спектра, в которых можно наблюдать верхушку облачного слоя Юпитера и детали его атмосферы в отраженном солнечном свете. Горобец Л.С. 2013 МБОУ «Ташлинская СОШ»

Трехмерный вид облаков Юпитера

На Юпитере, царствующем газовом гиганте, каждый день облачный. Это трехмерное изображение представляет упрощенную модель панорамы облачных слоев. Изображение получено при использовании изображений и спектральных данных, записанных кораблем Галилео. Разделение между облачными слоями и высота изменений в облаках преувеличены. Верхний облачный слой - туман толщиной несколько десятков км. На нижнем слое цвета означают различную высоту: светлоголубые облака - высокие и тонкие, красные - низкие, белые - высокие и толстые. Полосы на нижнем облачном слое ведут к темной голубой области - относительно чистой и сухой - подобной той, в которую был спущен атмосферный зонд 7 декабря 1995 года.

Полярное сияние на Юпитере

На этих двух недавно опубликованных картинках космического телескопа изображены северные и южные полярные сияния на Юпитере. Подобно полярным сияниям на Земле полярные сияния на Юпитере обусловлены стеканием заряженных частиц вдоль линий магнитного поля в атмосферу в районе северного и южного полюсов планеты. Однако магнитное поле Юпитера очень велико. Поэтому выброшенное с вулканического спутника Ио ионизованное вещество, залавливаемое магнитным полем Юпитера, создает сияния в тысячу раз интенсивнее, чем полярные сияния на Земле. Заряженные частицы с Ио стекают вдоль линий магнитного поля, образуя прямые "мосты", сходящие в атмосферу Юпитера. Горячие полярные пятна - следы магнитного поля размером 960 км и больше, располагаются над облаками Юпитера. Горячее пятно видно на обоих изображениях в виде кометоподобной структуры вне колец полярных сияний. Изображения получены в ультрафиолетовом свете и представлены в условных цветах. Лимб Юпитера выглядит коричневым, а полярные сияния - белым и голубым.



На высокогорной астрономической обсерватории в штате Вайоминг, занимающейся ИК-наблюдениями (WIRO), недавно было получено это изображение главной планеты в солнечной системе, газового гиганта Юпитера. Вы видите фотомонтаж в условных цветах, построенный на основе изображений, полученных при исследовании цифровой камеры, работающей при температуре жидкого гелия. Камера чувствительна к свету с длиной волны, в три раза большей, чем красный свет в видимом диапазоне. В ИК-диапазоне (около 2,1 микрона) происходит интенсивное поглощение солнечного света молекулярным водородом и метаном в нижних плотных слоях атмосферы Юпитера. Поэтому "полосатая" планета-гигант в ИК-диапазоне выглядит очень темной.

Но в юпитерианской стратосфере, выше поглощающего слоя, над экватором и полюсами имеются отдельные частицы, а также атмосферная дымка, которые отражают инфракрасный солнечный свет. Знаменитое Большое Красное Пятно также дотягивается до стратосферы Юпитера. Оно видно на рисунке как желтое пятнышко справа и ниже экваториальной полосы. Север на рисунке находится вверху. Юпитер обладает быстрым вращением (с периодом 10 часов), и это пятно вскоре скроется за правым краем юпитерианского диска.

Большое рентгеновское пятно на Юпитере

Самая большая планета солнечной системы, газовый гигант Юпитер, знаменит своим похожим на водоворот Большим Красным Пятном. Справа показано оптическое изображение знакомой всем гигантской планеты с циклоническими системами и полосами облаков, полученное пролетавшим около нее космическим аппаратом Кассини. Слева показано в искусственных цветах соответствующее изображение Юпитера в рентгеновских лучах, полученное орбитальной обсерваторией Чандра. На изображении, полученном Чандрой, впервые были обнаружены рентгеновские пятна и авроральное рентгеновское излучение от полюсов. Рентгеновское пятно, доминирующее в излучении от северного полюса Юпитера (вверху) возможно, так же удивительно для современных астрономов, как когда-то было Большое Красное Пятно. Противореча ранее предложенным теориям, рентгеновское пятно находится слишком далеко на севере, чтобы быть связанным с тяжелыми заряженными частицами из окрестностей вулканического спутника Ио. Данные Обсерватории Чандра также показывают, что рентгеновское излучение пятна таинственным образом пульсирует с периодом около 45 минут.

Это две самые яркие планеты на ночном небе, поэтому их можно легко увидеть невооруженным глазом. Венера появится немного ярче и чуть выше Юпитера справа.

