Логика высказываний

Алгоритм построения таблиц истинности

Автор:

Сергеев Евгений Викторович МОУ СОШ №4 г. Миньяра Челябинской области sergeev73@mail.ru http://shk4-minyar.ucoz.ru

Таблицы истинности

Решение логических выражений принято оформлять в виде таблиц, в которых по действиям показано, какие значения принимает логическое выражение при всех возможных наборах его переменных

Для составления таблицы

истинности необходимо:

- 1. Выяснить количество строк (2ⁿ, где n количество переменных)
- 2. Выяснить количество столбцов (количество переменных + количество логических операций)
- 3. Построить таблицу, указывая названия столбцов и возможные наборы значений переменных
- 4. Заполнить таблицу истинности по столбцам

Пример 1.

Построим таблицу истинности для функции $F = (A \lor B) \land (\neg A \lor \neg B)$

- Переменных: две (А и В), т.е. N = 2 ⇒ количество строк: 2ⁿ=2²=4.
 С заголовком: 5
- Количество столбцов:
 2 переменные + 5 операций (∨ , ∧ ,¬, ∨ и ¬).
 Итого 7
- 3. Порядок операций:

$$1 5 2 4 3$$
 $F = (A \lor B) \land (\neg A \lor \neg B)$

Пример 1. Таблица

 $F = (A \lor B) \land (\neg A \lor B)$

<u>¬B)</u>

Α	В	AVB	¬A	¬B	¬A V	(A∨B) ∧ (¬A ∨
		0	1	1	٦B	¬(B)
0	0	1	1	0	1	1
0	1	1	0	1	1	1
1	0	1	0	0	0	0
1	1					

Пример 2.

Построим таблицу истинности для функции

$$F = X \vee Y \wedge \neg Z$$

<u> 1. Переменных:</u>

три (**X**, **Y** и **Z**), т.е. $n = 3 \Rightarrow$ количество строк: $2^n = 2^3 = 8$. С заголовком: 9

2. Количество столбцов:

3 переменные + 3 операции (∨ , ∧ ,¬). Итого 6

лини и при водини водин

$$F = X \bigvee^3 Y \bigwedge^2 \neg Z$$

Пример. Таблица

$F = X \vee Y \wedge$

Х	Υ	Z	7 7 7	Y ∧ ¬Z	XVY∧¬Z
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	0	0	1