# Системы счисления



# СИСТЕМА СЧИСЛЕНИЯ - это способ изображения чисел и соответствующие ему правила действия над числами. 1, 2, 3,

1, 2, 3, 4, 5, 6, 7, 8, 9.0

#### Системы счисления

Непозиционные.

В таких системах от положения знака в записи числа не зависит величина, которую он обозначает; римская система счисления I - 1, V - 5, X - 10, L - 50 ССХХХІІ - 232 на Руси до 18 века использовали непозиционную систему счисления славянских цифр. Буквы кириллицы имели цифровое значение, если над ними ставился знак титло.

I, II, III, IV, V, VI, VII,....

#### Позиционные

В таких системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется ОСНОВАНИЕМ позиционной системы счисления. Система счисления, применяемая в современной математике, является позиционной десятичной системой. Ее основание равно 10, так как запись производится с помощью 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. В числе 333 содержится 3 сотни, 3 десятка, 3 единицы.

7\*10<sup>-3</sup>
За основание позиционной системы счисления можно принять любое натуральное число большее 1.

 $26,387 = 2*10^{1} + 6*10^{0} + 3*10^{-1} + 8*10^{-2} +$ 

# Основание системы, к которой относится число, обозначается подстрочным индексом к этому числу. $1011012_3$ , $36718_{10}$ , $3B8F16_{16}$ .

| •основание      | •система           | •алфавит                    |
|-----------------|--------------------|-----------------------------|
| $\bullet n = 2$ | •двоичная          | •0, 1                       |
| $\bullet n = 3$ | •троичная          | •0, 1, 2                    |
| •n = 8          | •восьмеричная      | •0,1, 2, 3, 4, 5, 6,<br>7   |
| •n = 16         | •шестнадцатеричная | •0, 19, A, B, C,<br>D, E, F |

#### Чтобы перевести из десятичной системы счисления в другую надо:

- данное десятичное число делится на основание системы с остатком;
- полученный остаток это младший разряд искомого числа, а полученное частное снова делится на основание, остаток равен второй справа цифре и так далее;
- так продолжается до тех пор, пока частное не станет меньше делителя (основания системы). Это частное старшая цифра искомого числа.

## Таблица перевода из двоичной записи в восьмеричную и наоброт

| Восьмиричная запись | Двоичная запись |  |  |  |
|---------------------|-----------------|--|--|--|
| 0                   | 000             |  |  |  |
| 1                   | 001             |  |  |  |
| 2                   | 010             |  |  |  |
| 3                   | 011             |  |  |  |
| 4                   | 100             |  |  |  |
| 5                   | 101             |  |  |  |
| 6                   | 110             |  |  |  |
| 7                   | 111             |  |  |  |

Например,  $10101101011111_2 = 1010110101111_2 = 12657_8$   $43_8 = 100011_2$ 

## <u>Таблица перевода из шестнадцатиричной системы в двоичную и наоборот.</u>

Например, 1001 1010 1111<sub>2</sub> = 9AF<sub>16</sub>;  $B5_{16}$  = 1011 0101<sub>2</sub>

| Шестнадцатиричная запись | Двоичная запись |
|--------------------------|-----------------|
| 0                        | 0000            |
| 1                        | 0001            |
| 2                        | 0010            |
| 3                        | 0011            |
| 4                        | 0100            |
| 5                        | 0101            |
| 6                        | 0110            |
| 7                        | 0111            |
| 8                        | 1000            |
| 9                        | 1001            |
| A 100000                 | 1010            |
| В ///                    | 1011            |
| C                        | 1100            |
| D                        | 1101            |
| E                        | 1110            |
| F                        | 1111            |

#### <del>гинорини перевода из однон спетемы в другую</del> без таблицы.

- □ Перевести число в десятичную систему счисления.
- □ Из десятичной перевести в нужную систему счисления.

Например, перевести 1011012 в пятеричную запись.

$$1011012 = 1$$
 **25** + **0**\*24 + 1\*23 + 1\*22 + 0\*21+1\*20 = 32 + 8 + 4 + 1 = 4510

$$45:5=9$$
 (oct. 0)

$$9:5=1 \text{ (oct 4)}$$

$$4510 = 1405$$
, то есть  $1011012 = 1405$ 

Перевести число 23С16 в восьмеричное.

$$23C16 = 2*162 + 3*161 + 12*160 = 2*256 + 48 + 12 = 512 + 60 = 57210$$

$$572:8=71 \text{ (oct. 4)}$$

$$71:8=8$$
 (oct. 7)

$$8:8 = 1(oct.0)$$

$$23C10 = 57210 = 10748$$

## Практическая работа

- □ Выполнить перевод чисел из десятичной системы счисления в двоичную: 1510;
   2610; 10110
- Выполнить перевод из двоичной системы счисления в десятичную: 110112; 110012; 11102

## Примеры:

- 37:2 = 18(ост1 младший разряд)
- $\Box$  18: 2 = 9 (oct 0)
- 9:2=4(oct 1)
- $\Box$  4: 2 = 2 (oct 0);
- 2: 2 = 1 (0 ct 0).3710 = 1001012

- $\Box$  15: 2 = 7(oct 1)
- = 7: 2 = 3(oct 1)
- 3:2=1 (oct 1)
- $\Box$  1510 = 11112



## Двоичная арифметика

- $\Box$  1. Сложение: 0 + 0 = 0;
- $\Box$  1 + 0 = 1;
- $\Box$  1 + 1 = 10.
- □ Пример:
  - 1011011101
- + 111010110

10010110011

- $\Box$  Умножение: 0 \* 0 = 0;
  - 1 \* 0 = 0;
- 1 \* 1 = 1.
- □ <u>Пример:</u>
  - 1101101
- \* 101
  - 1101101
- 1101101
- 1000100001



## Двоичная арифметика



```
\Box Вычитание: 0 - 0 = 0;
```

 $\Box$  1 - 0 = 1;

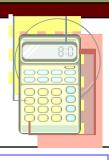
1 - 1 = 0.

□ Пример:

101

- 11

10


□ 4. Деление:

101110101111:1101 = 11100

Задания для самостоятельной работы:

- 1. Сложить двоичные числа 1111112+10012; 11001112+11012; 1001112+1110002
- 2. Вычесть: 1100112-10012; 1111112-10012; 11001112-11012
- 3. Умножить: 11012\*112; 10112\*1012; 1102\*102

### Двоичная кодировка.



В современной вычислительной технике информация чаще всего кодируется с помощью последовательностей сигналов всего двух видов: намагничено или не намагничено, включено, не выключено, высокое напряжение или низкое и так далее. Принято одно состояние обозначать цифрой 1, а другое -0, а цифры 0 и 1 называть битами. При двоичном кодировании каждому символу сопостовляется его код – последовательность из фиксированного количества нулей и единиц. В большинстве современных ЭВМ каждому симводу соответствует последовательность из 8 нулей и 1, называемая БАЙТОМ. Всего существует 256 разных последовательностей из 8 нулей и единиц – это позволяет закодировать 256 разных символов, например, буквы, цифры, знаки препинания и так далее. Соответствие байтов и символов задается с помощью таблицы, в которой для каждого кода указывается соответствующий символ.





## Пример

Коду 00100000 в этой таблице соответствует пробел. Коды русских букв отличаются от кодов латинских букв. Например, большая русская буква «М» имеет код 11101101, бука «И» – 11101001, буква «Р» — 11110010. Слово «МИР» шифруется так: 1110110111110100111110010 и несет 24 бита информации или 3 байта. 11101101111101001111101101 – РИМ – 24 бита или 3 байта.

#### Как поленитать скопько информании несет то или

#### иное издание?

- Каждый символ несет 1 байт или 8 битов. На страницу учебника помещается примерно 50 строк, в каждой строке примерно 60 знаков (60 байт). Значит, полностью заполненная страница имеет информационный объем около 3000 байт. Так 1 Кбайт = 210 байт = 1024 байта ≈ 1000 байта, то объем одной страницы примерно равен 3 Кбайта
- В учебнике 250 страниц, то 3 \* 250 = 750 Кбайт.
- □ В одном томе Большой Советской Энциклопедии примерно 120 Мбайт. В одном номере четырехстраничной газеты 150 Кбайт

#### Таблица кодов КОИ:

| код      | симв<br>ол | код      | симв<br>ол | код      | симв<br>ол | код      | Симв ол  |   |
|----------|------------|----------|------------|----------|------------|----------|----------|---|
| 00100000 | Проб       | 00110000 | 0          | 01000000 |            | 01010000 | P        |   |
|          | ел         |          | •          | V100000  |            | V1V1VVV  | 1        | _ |
| 00100001 | !          | 00110001 | 1          | 01000001 | A          | 01010001 | Q        |   |
| 00100010 | "          | 00110010 | 2          | 01000010 | В          | 01010010 | R        |   |
| 00100011 | #          | 00110011 | 3          | 01000011 | С          | 01010011 | S        |   |
| 00100100 | \$         | 00110100 | 4          | 01000100 | D          | 01010100 | Т        |   |
| 00100101 | %          | 00110101 | 5          | 01000101 | Е          | 01010101 | U        |   |
| 00100110 | &          | 00110110 | 6          | 01000110 | F          | 01010110 | V        |   |
| 00100111 | ۲          | 00110111 | 7          | 01000111 | G          | 01010111 | W        |   |
| 00101000 | (          | 00111000 | 8          | 01001000 | Н          | 01011000 | X        |   |
| 00101001 | )          | 00111001 | 9          | 01001001 | I          | 01011001 | Y        |   |
| 00101010 | *          | 00111010 | :          | 01001010 | J          | 01011010 | Z        |   |
| 00101011 | +          | 00111011 | ,          | 01001011 | K          | 01011011 | [        |   |
| 00101100 | ,          | 00111100 | <          | 01001100 | L          | 01011100 | \        |   |
| 00101101 | -          | 00111101 | =          | 01001101 | M          | 01011101 | ]        |   |
| 00101110 |            | 00111110 | >          | 01001110 | N          | 01011110 | $\wedge$ |   |
| 00101111 | /          | 00111111 | ?          | 01001111 | О          | ••••     |          |   |

## Единицы измерения информации.

- $\square$  1 Кбит = 210 = 1024 бит ( $\approx$  1 тыс. бит)
- $\square$  1 Мбит = 220 = 1048576 бит ( $\approx$  1 млн. бит)
- $\Box$  1 Гбит = 230  $\approx$  109 бит (миллиард бит)
- $\square$  1 Кбайт = 210 = 1024 байт ( $\approx$  1 тыс. байт)
- □ 1 Мбайт = 220 = 1048576 байт (≈ 1 млн байт)
- $\square$  1 Гбайт = 230 ( $\approx$  1 млрд. байт)