

Лекция 3. **Применение линейного программирования в математических моделях**

Содержание лекции:

- 1. Принцип оптимальности в планировании и управлении
- Задача линейного программирования
- 3. Симплексный метод
- 4. Экономические приложения линейного программирования
- 5. Программное обеспечение линейного программирования

Литература

- Экономико-математические методы и прикладные модели: Учеб. пособие для вузов / Под ред. В.В. Федосеева. 2-е изд. М.: ЮНИТИ-ДАНА, 2005. глава 2.
- *Вентцель Е.С.* Исследование операций: Задачи, принципы, методология. М.: Высшая школа, 2001.
- *Канторович Л.В.* Экономический расчёт наилучшего использования ресурсов. М.: Изд-во АН СССР, 1960.
- Светлов Н.М., Светлова Г.Н. Построение и решение оптимизационных моделей средствами программ МS Excel и XA: Методические указания для студентов экономического факультета / РГАУ МСХА имени К.А. Тимирязева. М., 2005. http://svetlov.timacad.ru/umk1/xa_1.doc

3.1. Принцип оптимальности в планировании и управлении

- Принцип оптимальности предполагает следующее:
 - наличие определённых ресурсов
 - наличие определённых технологических возможностей
 - цель хозяйственной деятельности
 - извлечение прибыли
 - удовлетворение потребностей
 - предотвращение угрозы
 - накопление знаний
 - ♦ И Т.Д.
- Суть принципа:
 - планировать хозяйственную деятельность таким образом, чтобы при имеющихся ресурсах и технологиях *не существовало* способа достичь цели в большей степени, чем это предусматривает план
- В полной мере этот принцип может быть реализован только с помощью экономико-математических моделей

Линейная целевая функция

max (min)
$$c_1 X_1 + c_2 X_2 + K + c_n X_n$$

$$a_{11}X_1 + a_{12}X_2 + K + a_{1n}X_n \le -\ge b_1,$$

 $a_{21}X_1 + a_{22}X_2 + K + a_{2n}X_n \le -\ge b_2,$
K K K

Линейные ограниуе́ния

$$a_{m1}X_1 + a_{m2}X_2 + K + a_{mn}X_n \{ \leq, =, \geq \} b_{m, -}$$

$$X_i \geq 0, j = 1K n$$

Условия неотрицательности переменных

• Это развёрнутая форма записи

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, i = 1 \text{K} m$$

$$x_{i} \geq 0$$
, $j = 1$ K n ; $b_{i} \geq 0$, $i = 1$ K m

Линейная целевая функция

Линейные ограничения

Условия неотрицательности переменных

Любую ЗЛП можно записать в каноническом виде (ограничения – равенства, свободные члены неотрицательны, решается на максимум)

• Это каноническая форма записи

max cx

Ax = b

 $x \ge 0$; $b \ge 0$

Линейная целевая функция

Линейные ограни- чения

Условия неотрицательности переменных

- Это матричная форма записи
 - Она тождественна канонической форме

max (min) cx

Ax
$$\{\leq,=,\geq\}$$
 b

$$x \ge 0$$

*Линейная*целевая
функция

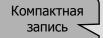
Условия неотрицательности переменных

• Это стандартная форма записи

- Любой вектор **х**, удовлетворяющий *ограничениям* и *условиям неотрицательности* (безотносительно к целевой функции), называется допустимым решением
 - Если допустимых решений не существует, говорят, что система ограничений <u>несовместна</u>
- Областью допустимых решений (ОДР) называется множество, включающее все допустимые решения данной ЗЛП
- Допустимое решение **х***, доставляющее наибольшее значение целевой функции среди всех допустимых решений данной ЗЛП, называется оптимальным решением
 - часто его называют просто решением ЗЛП

ЗЛП может:

- не иметь ни одного оптимального решения
 - допустимой области не существует система ограничений не совместна



$$z = \max(x_1 + x_2 | x_1 + 5x_2 \le 1, x_1 + x_2 \ge 5, x_1 \ge 0, x_2 \ge 0)$$

• допустимая область существует, но не ограничивает целевую функцию

$$z = \max(2x_1 + x_2 | 0.1x_1 + 0.1x_2 \ge 5, x_1 \ge 0, x_2 \ge 0)$$

• иметь одно оптимальное решение

$$z = \max(x_1 + x_2 | 0.1x_1 + 0.2x_2 \le 5, x_1 \ge 0, x_2 \ge 0)$$

 $x_1 = 50, x_2 = 0; z = 50$

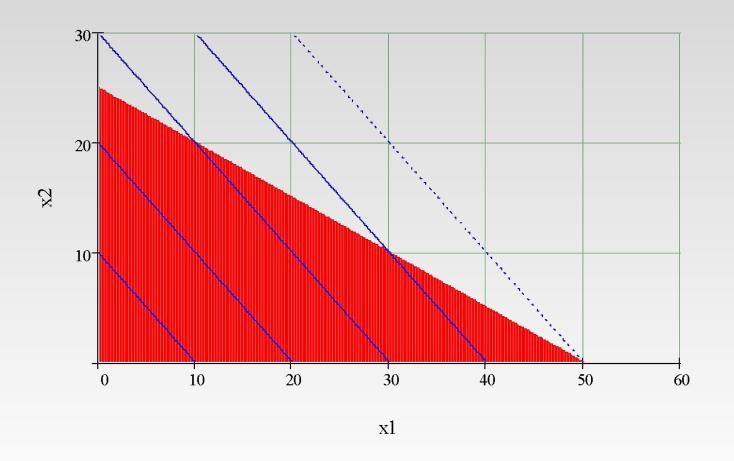
• иметь бесконечно много оптимальных решений

$$z = \max(x_1 + x_2 | 0.1x_1 + 0.1x_2 \le 5, x_1 \ge 0, x_2 \ge 0)$$

 $x_1 = 50, x_2 = 0; z = 50 \dots x_1 = 0, x_2 = 50; z = 50$

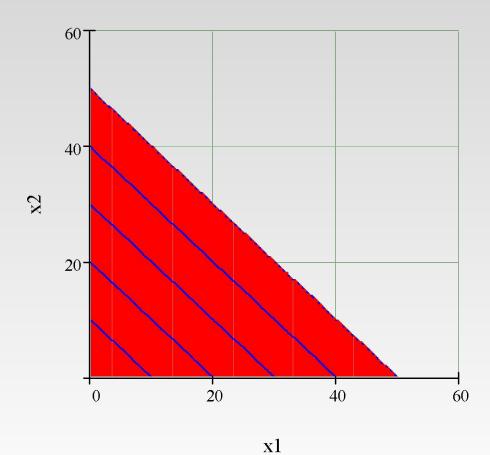
$$z = \max(x_1 + x_2 | 0.1x_1 + 0.2x_2 \le 5, x_1 \ge 0, x_2 \ge 0)$$

 $x_1 = 50, x_2 = 0; z = 50$

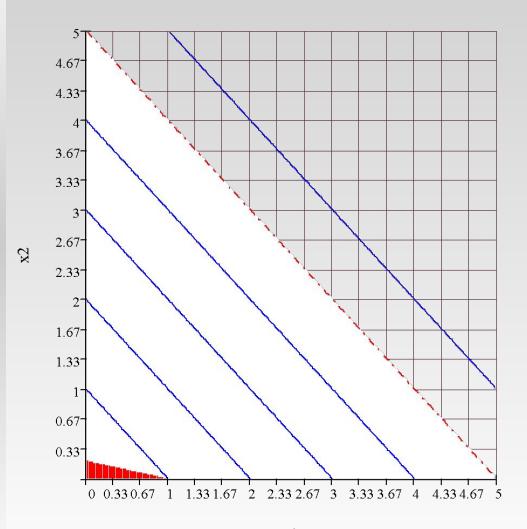


$$z = \max(x_1 + x_2 | 0.1x_1 + 0.1x_2 \le 5, x_1 \ge 0, x_2 \ge 0)$$

 $x_1 = 50, x_2 = 0; z = 50 \dots x_1 = 0, x_2 = 50; z = 50$

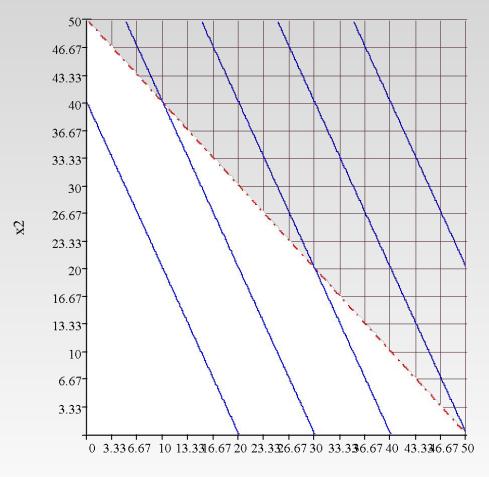


$z = \max(x_1 + x_2 | x_1 + 5x_2 \le 1, x_1 + x_2 \ge 5, x_1 \ge 0, x_2 \ge 0)$



Несовместность системы ограничений

$z = \max(2x_1 + x_2 | 0.1x_1 + 0.1x_2 \ge 5, x_1 \ge 0, x_2 \ge 0)$



Неограниченность целевой функции

x1

3.3. Симплексный метод

- Исходные условия применения симплексного метода
 - ЗЛП записана в канонической форме
 - Её ограничения линейно независимы
 - 3. Известно *опорное решение*, в котором:
 - \bullet имеется не более m ненулевых переменных
 - задача содержит *п* переменных и *m* ограничений
 - все ограничения выполняются
 - 4. *т* переменных, называемых <u>базисными</u> (среди которых все ненулевые) выражены через:
 - *п*-*m* переменных, называемых <u>свободными</u> (каждая равна нулю)
 - свободный член ограничения
 - лего Результат этой процедуры записан в <u>начальную</u> (первую, исходную) <u>симплексную таблицу</u>

3.3.

$$z = \max(x_1 + x_2 | 0.1x_1 + 0.2x_2 \le 5, x_1 - 2x_2 \le 75, x_1 \ge 0, x_2 \ge 0)$$

 $x_1 \ge 0, x_2 \ge 0$
 $x_1 = 50, x_2 = 0; z = 50$

Каноническая форма:

$$\max x_1 + x_2$$

$$0.1x_1 + 0.2x_2 + x_3 = 5$$

$$x_1 - 2x_2 + x_4 = 75$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$$

	j =1	<i>j</i> = 2	j = 3 $i = 1$	j = 4 $i = 2$	b
$C_i, C_i \Rightarrow$	1	1	0	0	0
i = 1	0.1	0.2	1	0	5
i = 2	1	-2	0	1	75

Разрешающий столбец:

- ullet столбец с наибольшим положительным c_{i}
 - ullet если положительного c_{j} нет, достигнут оптимум

В таблице выделены жирным шрифтом

• Разрешающая строка:

- для всех положительных a_{ij} в выбранном столбце считаем b_i/a_{ii}
 - если положительных нет, ц.ф. не ограничена
- выбираем строку где это значение минимально

	j =1	<i>j</i> = 2	j = 3 $i = 1$	$ \int_{i=2}^{\infty} 4 $	b
$C_{j}, C_{j} \Rightarrow$	1	1	0	0	0
i = 1	0.1	0.2	1	0	5
<i>i</i> = 2	1	-2	0	1	75

- Выполняем *обыкновенные жордановы исключения* во всей таблице:
- для строк $i \neq i'$: $a_{ij}_{\text{нов}} = a_{ij} a_{i'j} a_{ij'} / a_{i'j'}$, где i' и j' координаты выбранных (разрешающих) строки и столбца
- для строки $i = i' : a_{ij} = a_{ij}/a_{i'j'}$

	j = 1 $i = 1 (50)$	j = 2	j = 3	j = 4 $i = 2$ (25)	b
$C_i, C_i \Rightarrow$	0	-1	-10	0	-50
i = 1	1	2	10	0	> 50
<i>i</i> = 2	0	-4	-10	1	→ 25

Положительных C_j больше нет — достигнут ОПТИМУМ (в больших задачах для этого требуются тысячи итераций)

3.3.

- Опорное решение может быть получено по следующей процедуре:
 - Выбираем произвольный набор базисных переменных и выражаем их через свободные
 - Если строк с отрицательными свободными членами нет опорное решение получено; иначе – п.3.
 - Одну из таких строк выбираем в качестве вспомогательной целевой функции и проводим по ней процедуру решения на минимум, используя алгоритм симплекс-метода
 - Если в качестве разрешающей выбирается строка с отрицательным свободным членом, то разрешающий элемент тоже должен быть отрицательным

 - для $\underline{\textit{BCEX}}\ a_{ij}$ в выбранном столбце считаем b_i/a_{ij} наименьшее положительное значение этого отношения указывает разрешающую строку
 - если положительных нет, выбираем другую строку с отрицательным свободным членом в качестве вспомогательной целевой функции
 - если таковых не находится, опорных решений не существует (целевая функция не ограничена множеством допустимых решений)
 - Если оптимум достигнут при отрицательном свободном члене система ограничений несовместна; иначе п.5
 - Как только достигнуто положительное значение свободного члена, переходим к п.2.

3.3.

В некоторых случаях алгоритм симплексного метода может зацикливаться.

Пути преодоления этой проблемы описаны в рекомендуемой литературе.

3.4. Экономические приложения линейного программирования

Основная задача наро

планирования

х = (объёмы производо

(f, шт., м ³и т.д.

у – объём удовлетвор

Целевая функция: тах

Балансы невоспроизводимых ресурсов: $\mathbf{A}_1 \mathbf{x} \leq \mathbf{b}$

Балансы воспроизводимых ресурсов: $\mathbf{A}_2 \mathbf{x} \leq \mathbf{0}$

Баланс продукции: $A_3 x \ge y c$

 $x \ge 0, y \ge 0.$

Матрица потребности в ресурсах для

Объёмы невоспроизводимых ресурсов

Матрица затрат (+) и выпуска (-) ресурсов при единичном объёме производства в

Матрица выпуска (+) конечной продукции

Вектор объёмов потребления каждого вида конечной продукции при единичном (стандартном) уровне удовлетворения потребностей

осы,

3.4. Экономические приложения линейного программирования

Основная задача произя

планирования

х = **объёмы** реализации п

у = **объёмы закупки ресуг**

Целевая функция: тах

Балансы ресурсов: $\mathbf{A}_1 \mathbf{x} \leq \mathbf{y} + \mathbf{b}_1$

например, работники, производственные п омещен

(например, работники, производственные п омещения, оборудование, сырьё, электроэнергия и т.п.)

Выполнение обязательств: $\mathbf{A}_{2}\mathbf{x} \geq \mathbf{b}_{2}$

(например, налог на имущество, возврат и нвестиционного кредита и т.п.)

 $x \ge 0, y \ge 0.$

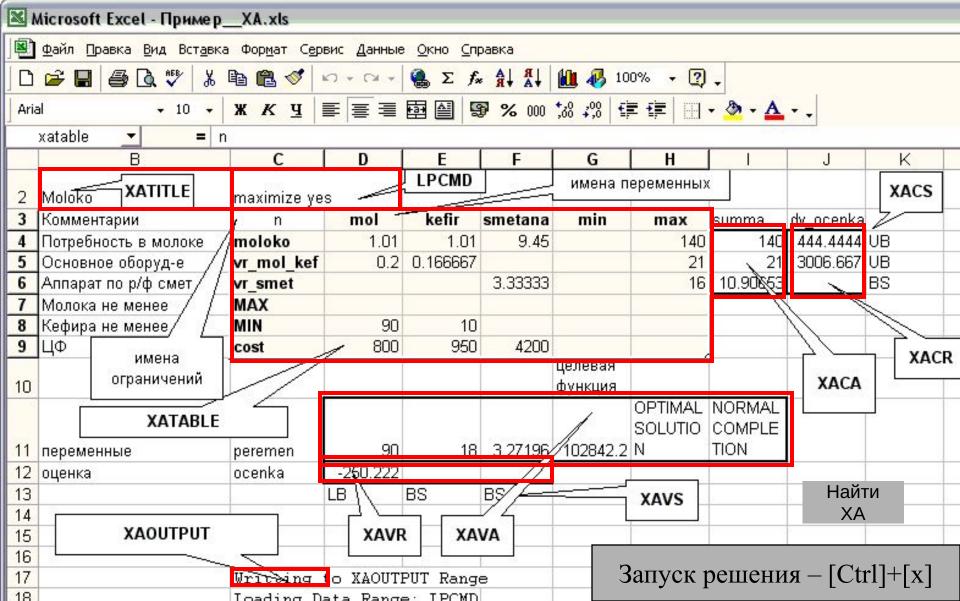
Вектор цен

Объёмы обязательств, имеющихся у предприятия и учитываемых при оптимальном планировании (выполнение которых зависит от составленного плана)

рсализации

единицы продукции каждого вида

3.5. Программное обеспечение линейного программирования



3.5.

- Два способа установки XA
 - Если есть права доступа к каталогу C:\WINDOWS
 - копируем туда файлы CXA32.DLL и CAXA32.DLL
 - Иначе
 - копируем файлы CXA32.DLL и CAXA32.DLL в ту папку, в которой решаем модель
 - после вызова файла модели нажимаем кнопку

Найти ХА

и указываем расположение любого из этих файлов

- это действие повторяется при каждом вызове Excel
- Антивирус Касперского блокирует выполнение XA
 - При первом вызове программы следует в ответ на предупреждение антивируса дать ему указание разрешать выполнение данной программы